Optimization of Power Generation Grids: A Case of Study in Eastern Mexico
Abstract
:1. Introduction
Power Energy Generation in Mexico
2. Materials and Methods
2.1. Modeling for a Certain Time
2.2. Model for Various Periods
3. Implementation and Discussion of Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, Y.V.; Sivanagaraju, S.; Suresh, C.V. Analyzing the effect of dynamic loads on economic dispatch in the presence of interline power flow controller using modified BAT algorithm. J. Electr. Syst. Inf. Technol. 2016, 3, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Hadera, H.; Ekström, J.; Sand, G.; Mäntysaari, J.; Harjunkoski, I.; Engell, S. Integration of production scheduling and energy-cost optimization using Mean Value Cross Decomposition. Comput. Chem. Eng. 2019, 129, 106436. [Google Scholar] [CrossRef]
- Ringwood, J.V.; Bofelli, D.; Murray, F.T. Forecasting Electricity Demand on Short, Medium and Long Time Scales Using Neural Networks. J. Intell. Robot. Syst. 2001, 31, 129–147. [Google Scholar] [CrossRef]
- Bruno, S.; Dellino, G.; La Scala, M.; Meloni, C. A Microforecasting Module for Energy Management in Residential and Tertiary Buildings. Energies 2019, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Liu, M.; Fan, S.; Pu, T. A Stochastic Model Predictive Control Based Dynamic Optimization of Distribution Network. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Chang, P.-C.; Fan, C.-Y.; Lin, J.-J. Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Electr. Power Energy Syst. 2011, 33, 17–27. [Google Scholar] [CrossRef]
- Kafazi, I.; Bannari, R.; Adib, I.; Nabil, H.; Dragicevic, T. Renewable energies: Modeling and optimization of production cost. Energy Procedia 2017, 136, 380–387. [Google Scholar] [CrossRef]
- Investigación de Operaciones. Available online: https://editorialpatria.com.mx/pdffiles/9786074386967.pdf (accessed on 3 June 2021).
- Caballero, J.A.; Grossmann, I.E. Una revisión del estado del arte en optimización. Revista Iberoam. Automática Inf. Ind. 2007, 4, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Taha, H.A. Investigación de Operaciones, Novena ed.; Pearson Educación: Naucalpan de Juárez, Mexico, 2012; ISBN 978-607-32-0796-6. [Google Scholar]
- Somma, M.D.; Yanc, B.; Biancob, N.; Graditia, G.; Luhc, P.B.; Mongibelloa, L.; Naso, V. Design optimization of a distributed energy system through cost and exergy assessments. Energy Procedia 2017, 105, 2451–2459. [Google Scholar] [CrossRef]
- di Pilla, L.; Desogus, G.; Mura, S.; Ricciu, R.; Di Francesco, M. Optimizing the distribution of Italian building energy retrofit incentives with Linear Programming. Energy Build. 2016, 112, 21–27. [Google Scholar] [CrossRef]
- McLarty, D.; Panossian, N.; Jabbari, F.; Traverso, A. Dynamic economic dispatch using complementary quadratic programming. Energy 2019, 166, 755–764. [Google Scholar] [CrossRef]
- Arsuaga-Ríos, M.; Vega-Rodríguez, M.A. Multi-objective energy optimization in grid systems from a brain storming strategy. Soft Comput. 2014, 19, 3159–3172. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.B.; Etezadi-Amoli, M.; Fadali, M.S.; Baghzouz, Y. Genetic-Algorithm-Based Optimization Approach for Energy Management. IEEE Trans. Power Deliv. 2013, 28, 162–170. [Google Scholar] [CrossRef]
- He, G.; Yan, H.; Liu, K.; Yu, B.; Cui, G.; Zheng, J.; Pan, Y. An optimization method of multiple energy flows for CCHP based on fuzzy theory and PSO. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–6. [Google Scholar]
- Li, Y.; Yao, J.; Yao, D. An efficient composite simulated annealing algorithm for global optimization. In Proceedings of the IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, Chengdu, China, 29 June–1 July 2002; Volume 2, pp. 1165–1169. [Google Scholar]
- Toksarı, M.D. Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 2007, 35, 3984–3990. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Fukuyama, Y. Reactive Tabu Search for Job-shop scheduling problems considering peak shift of electric power energy consumption. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 3406–3409. [Google Scholar]
- Kumar, M.V.L.; Prasanna, H.A.M.; Ananthapadmanabha, T. An Artificial Bee Colony algorithm based distribution system state estimation including Renewable Energy Sources. In Proceedings of the 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], Nagercoil, India, 20–21 March 2014; pp. 509–515. [Google Scholar]
- Killian, M.; Zauner, M.; Kozek, M. Comprehensive smart home energy management system using mixed-integer quadratic-programming. Appl. Energy 2018, 222, 662–672. [Google Scholar] [CrossRef]
- Zio, E.; Baraldi, P.; Pedroni, N. Optimal power system generation scheduling by multi-objective genetic algorithms with preferences. Reliab. Eng. Syst. Safety 2009, 94, 432–444. [Google Scholar] [CrossRef]
- Rodzin, S.I. Smart Dispatching and Metaheuristic Swarm Flow Algorithm. J. Comput. Syst. Sci. Int. 2014, 53, 109–115. [Google Scholar] [CrossRef]
- Gallego Carrillo, M.; Pantrigo Fernández, J.J.; Duarte Muñoz, A. Metaheuriísticas; Dykinson: Madrid, Spain, 2007. [Google Scholar]
- Eren, Y.; Küçükdemiral, İ.B.; Üstoğlu, İ. Chapter 2—Introduction to Optimization. In Optimization in Renewable Energy Systems; Erdinç, O., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 27–74. ISBN 9780081010419. [Google Scholar]
- Cardona, H.A.; Burgos, M.A.; González, J.W.; Isaac, I.A.; López, G.J. Aplicación en Matlab para la programación del despacho económico hidrotérmico. Rev. Investig. Aplicadas. 2012, 6, 42–53. [Google Scholar]
- Augustine, N.; Suresh, S.; Moghe, P.; Sheikh, K. Economic dispatch for a microgrid considering renewable energy cost functions. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–7. [Google Scholar]
- Ramanathan, R. Emission constrained economic dispatch. IEEE Trans. Power Syst. 1994, 9, 1994–2000. [Google Scholar] [CrossRef]
- Muslu, M. Economic dispatch with environmental considerations: Tradeoff curves and emission reduction rates. Electr. Power Syst. Res. 2004, 71, 153–158. [Google Scholar] [CrossRef]
- Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Meiqin, M.; Meihong, J.; Wei, D.; Chang, L. Multi-objective economic dispatch model for a microgrid considering reliability. In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems Hefei, Hefei, China, 16–18 June 2010; pp. 993–998. [Google Scholar] [CrossRef]
- Wang, Y.; An, Y.; Xi, F.; Yao, J.; Wei, Q. Multi-Objective Optimal Operation of Micro-Grid Based on Demand Side Management. J. Phys. Conf. Ser. 2018, 1087, 062009. [Google Scholar] [CrossRef]
- Zhang, Y.; Gatsis, N.; Giannakis, G. Robust Energy Management for Microgrids With High-Penetration Renewables. IEEE Trans. Sustain. Energy 2013, 4, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Li, Q.; Yuan, X. Economic and optimal dispatching of power microgrid with renewable energy. In Proceedings of the 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, China, 23–26 September 2014; pp. 16–20. [Google Scholar]
- Secretaria de Gobernación. Marco Legal y Regulatorio del Sector Energético en MÉXICO. Available online: https://www.gob.mx/cms/uploads/attachment/file/116455/1665.pdf (accessed on 3 June 2021).
- Secretaría de Energía. El Gobierno de México Fortalece el Sistema Eléctrico Nacional. Available online: https://www.gob.mx/sener/articulos/el-gobierno-de-mexico-fortalece-el-sistema-electrico-nacional (accessed on 3 June 2021).
- Centro Nacional de Control de Energía (CENACE). Demandas del Sistema Eléctrico Nacional. Available online: https://www.cenace.gob.mx/Paginas/Publicas/Info/DemandaRegional.aspx (accessed on 3 June 2021).
- Instituto Nacional de Estadística y Geografía (INEGI). Producto Interno Bruto por Entidad Federativa 2019. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2020/OtrTemEcon/PIBEntFed2019.pdf (accessed on 3 June 2021).
- The Mexican National Institute for the Acess to Information. Ministry of Energy. Application Number: 0001800090519. 2019. Available online: https://buscador.plataformadetransparencia.org.mx/web/guest/buscadornacional?buscador=0001800090519&coleccion=5 (accessed on 3 June 2021).
- MathWorks. Mixed-Integer Linear Programming (MILP). Available online: https://www.mathworks.com/help/optim/ug/intlinprog.html?s_tid=srchtitle (accessed on 3 June 2021).
Minimum Energy |
---|
Maximum Energy |
Maximum Load Rise Ramp |
Maximum Load Descent Ramp |
Start |
On/Stop |
State |
Demand |
Central | (MWh) | (MWh) | ||||
---|---|---|---|---|---|---|
1. Bioenergy | 295.14 | 78.75 | 3.94 | 265.524 | 0 | 330 |
2. Combined cycle | 2883.9 | 742.5 | 2.72 | 92.28 | 0 | 210 |
3. Combined cycle | 5721.06 | 1474.5 | 2.69 | 90.174 | 0 | 216 |
4. Efficient Cogeneration | 2138.28 | 551.1 | 2.73 | 93.318 | 108.3 | 210 |
5. Internal Combustion | 86.22 | 23.55 | 3.16 | 168.264 | 108.3 | 258 |
6. Wind power | 294.9048 | 246 | 0 | 149.778 | 0 | 240 |
7. Wind power | 450.4491 | 375.75 | 0 | 149.778 | 0 | 240 |
8. Wind power | 420.7788 | 351 | 0 | 149.778 | 0 | 240 |
9. Geothermal | 301.98 | 80.4 | 0.06 | 522.708 | 0 | 270 |
10. Hydroelectric | 4728.24 | 1350 | 0 | 151.464 | 0 | 246 |
11. Hydroelectric | 3152.16 | 900 | 0 | 151.464 | 0 | 246 |
12. Hydroelectric | 12,608.64 | 3600 | 0 | 151.464 | 0 | 246 |
13. Hydroelectric | 5673.888 | 1620 | 0 | 151.464 | 0 | 246 |
14. Nuclear power plant | 8742.9 | 2265 | 2.25 | 588 | 0 | 660 |
15. Thermal | 2001.3 | 525 | 2.2 | 170.862 | 472.86 | 258 |
16. Thermal | 647.64 | 172.8 | 3.94 | 265.524 | 468.6 | 330 |
17. Turbogas | 715.5 | 181.05 | 4.19 | 51.102 | 216.6 | 120 |
Central | Power to Be Generated in 6 h | On | Start | Stop |
---|---|---|---|---|
1. Bioenergy | 0 | 0 | 0 | 1 |
2. Combined cycle | 0 | 0 | 0 | 1 |
3. Combined cycle | 0 | 0 | 0 | 1 |
4. Efficient Cogeneration | 0 | 0 | 0 | 1 |
5. Internal Combustion | 23.55 | 1 | 0 | 0 |
6. Wind power | 294.9048 | 1 | 0 | 0 |
7. Wind power | 450.4491 | 1 | 0 | 0 |
8. Wind power | 420.7788 | 1 | 0 | 0 |
9. Geothermal | 80.4 | 1 | 0 | 0 |
10. Hydroelectric | 4728.24 | 1 | 0 | 0 |
11. Hydroelectric | 3152.16 | 1 | 0 | 0 |
12. Hydroelectric | 11062.0373 | 1 | 0 | 0 |
13. Hydroelectric | 1620 | 1 | 0 | 0 |
14. Nuclear power plant | 0 | 0 | 0 | 1 |
15. Thermal | 0 | 0 | 0 | 1 |
16. Thermal | 0 | 0 | 0 | 1 |
17. Turbogas | 0 | 0 | 0 | 1 |
Central | Power to Be Generated in 6 h | On | Start | Stop |
---|---|---|---|---|
1. Bioenergy | 0 | 0 | 0 | 1 |
2. Combined cycle | 0 | 0 | 0 | 1 |
3. Combined cycle | 0 | 0 | 0 | 1 |
4. Efficient Cogeneration | 0 | 0 | 0 | 1 |
5. Internal Combustion | 23.55 | 1 | 0 | 0 |
6. Wind power | 294.91 | 1 | 0 | 0 |
7. Wind power | 450.45 | 1 | 0 | 0 |
8. Wind power | 420.78 | 1 | 0 | 0 |
9. Geothermal | 80.4 | 1 | 0 | 0 |
10. Hydroelectric | 4728.24 | 1 | 0 | 0 |
11. Hydroelectric | 3152.16 | 1 | 0 | 0 |
12. Hydroelectric | 12,608.64 | 1 | 0 | 0 |
13. Hydroelectric | 2708.79 | 1 | 0 | 0 |
14. Nuclear power plant | 0 | 0 | 0 | 1 |
15. Thermal | 0 | 0 | 0 | 1 |
16. Thermal | 0 | 0 | 0 | 1 |
17. Turbogas | 0 | 0 | 0 | 1 |
Central | Power to Be Generated in 6 h | On | Start | Stop |
---|---|---|---|---|
1. Bioenergy | 0 | 0 | 0 | 1 |
2. Combined cycle | 0 | 0 | 0 | 1 |
3. Combined cycle | 0 | 0 | 0 | 1 |
4. Efficient Cogeneration | 0 | 0 | 0 | 1 |
5. Internal Combustion | 23.55 | 1 | 0 | 0 |
6. Wind power | 294.91 | 1 | 0 | 0 |
7. Wind power | 450.45 | 1 | 0 | 0 |
8. Wind power | 420.78 | 1 | 0 | 0 |
9. Geothermal | 80.4 | 1 | 0 | 0 |
10. Hydroelectric | 4728.24 | 1 | 0 | 0 |
11. Hydroelectric | 3152.16 | 1 | 0 | 0 |
12. Hydroelectric | 12,608.64 | 1 | 0 | 0 |
13. Hydroelectric | 4901.96 | 1 | 0 | 0 |
14. Nuclear power plant | 0 | 0 | 0 | 1 |
15. Thermal | 0 | 0 | 0 | 1 |
16. Thermal | 0 | 0 | 0 | 1 |
17. Turbogas | 0 | 0 | 0 | 1 |
Central | Power to Be Generated in 6 h | On | Start | Stop |
---|---|---|---|---|
1. Bioenergy | 0 | 0 | 0 | 1 |
2. Combined cycle | 0 | 0 | 0 | 1 |
3. Combined cycle | 0 | 0 | 0 | 1 |
4. Efficient Cogeneration | 0 | 0 | 0 | 1 |
5. Internal Combustion | 23.55 | 1 | 0 | 0 |
6. Wind power | 294.91 | 1 | 0 | 0 |
7. Wind power | 450.45 | 1 | 0 | 0 |
8. Wind power | 420.78 | 1 | 0 | 0 |
9. Geothermal | 80.4 | 1 | 0 | 0 |
10. Hydroelectric | 4728.24 | 1 | 0 | 0 |
11. Hydroelectric | 3152.16 | 1 | 0 | 0 |
12. Hydroelectric | 12,608.64 | 1 | 0 | 0 |
13. Hydroelectric | 3675.32 | 1 | 0 | 0 |
14. Nuclear power plant | 0 | 0 | 0 | 1 |
15. Thermal | 0 | 0 | 0 | 1 |
16. Thermal | 0 | 0 | 0 | 1 |
17. Turbogas | 0 | 0 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, E.; Domínguez-Cruz, R.F.; Salgado-Tránsito, I. Optimization of Power Generation Grids: A Case of Study in Eastern Mexico. Math. Comput. Appl. 2021, 26, 46. https://doi.org/10.3390/mca26020046
López E, Domínguez-Cruz RF, Salgado-Tránsito I. Optimization of Power Generation Grids: A Case of Study in Eastern Mexico. Mathematical and Computational Applications. 2021; 26(2):46. https://doi.org/10.3390/mca26020046
Chicago/Turabian StyleLópez, Esmeralda, René F. Domínguez-Cruz, and Iván Salgado-Tránsito. 2021. "Optimization of Power Generation Grids: A Case of Study in Eastern Mexico" Mathematical and Computational Applications 26, no. 2: 46. https://doi.org/10.3390/mca26020046