Stretchable Superhydrophobic Surfaces: From Basic Fabrication Strategies to Applications
Abstract
:1. Introduction
2. Strategies for Achieving Stretchable Superhydrophobic Surfaces
2.1. Covering Elastomers with a Layer of Rough and Low Surface Energy Materials
2.2. Hybridizing Functional Materials in Elastomers
2.3. Directly Manufacturing Rough Surfaces Utilizing Bulk Elastomers
3. Application of Stretchable Superhydrophobic Surfaces
3.1. Strain Sensing
3.2. Prevention of Corrosion
3.3. Oil–Water Separation
3.4. Anti-Icing
3.5. Droplet Manipulation
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Wang, S.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Ding, J.; Xu, Z.; Zhang, J.; He, Q. Preparation strategy and evaluation method of durable superhydrophobic rubber composites. Adv. Colloid Interface Sci. 2022, 299, 102549. [Google Scholar] [CrossRef] [PubMed]
- Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Cassie, A.B.D. Contact angles. Discuss. Faraday Soc. 1948, 3, 11–16. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, T.; Bing, W.; Dong, S.; Tian, L. Antifouling performance and mechanism of elastic graphene–silicone rubber composite membranes. J. Mater. Chem. B 2019, 7, 488–497. [Google Scholar] [CrossRef]
- Rasitha, T.P.; Sofia, S.; Anandkumar, B.; Philip, J. Long term antifouling performance of superhydrophobic surfaces in seawater environment: Effect of substrate material, hierarchical surface feature and surface chemistry. Colloids Surf. A 2022, 647, 129194. [Google Scholar] [CrossRef]
- Shi, S.; Meng, S.; Zhao, P.; Xiao, G.; Yuan, Y.; Wang, H.; Liu, T.; Wang, N. Underwater adhesion and curing of superhydrophobic coatings for facile antifouling applications in seawater. Compos. Commun. 2023, 38, 101511. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Fangteng, J.; Wang, S.; Fang, L.; Shen, H.; Xiang, S.; Sun, H.; Yang, B. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. Nanoscale 2014, 6, 13845–13853. [Google Scholar] [CrossRef]
- Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621. [Google Scholar] [CrossRef]
- Zhang, J.; Seeger, S. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 2011, 21, 4699–4704. [Google Scholar] [CrossRef]
- Li, A.; Sun, H.-X.; Tan, D.-Z.; Fan, W.-J.; Wen, S.-H.; Qing, X.-J.; Li, G.-X.; Li, S.-Y.; Deng, W.-Q. Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ. Sci. 2011, 4, 2062–2065. [Google Scholar] [CrossRef]
- Lee, C.H.; Johnson, N.; Drelich, J.; Yap, Y.K. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 2011, 49, 669–676. [Google Scholar] [CrossRef]
- Liu, W.; Xiang, S.; Liu, X.; Yang, B. Underwater superoleophobic surface based on silica hierarchical cylinder arrays with a low aspect ratio. ACS Nano 2020, 14, 9166–9175. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 2011, 23, 4270–4273. [Google Scholar] [CrossRef]
- Zhu, J.; Li, L.; Dong, M.; Zeng, Z.; Sun, L. Fabrication of flexible and stretchable surfaces by modifying SiO2 on waste chewing gum for self-cleaning of fine-dust deposition. Colloids Surf. A 2023, 675, 132128. [Google Scholar] [CrossRef]
- Shan, Y.; Zhou, Z.; Bai, H.; Wang, T.; Liu, L.; Zhao, X.; Huang, Y. Recovery of the self-cleaning property of silicon elastomers utilizing the concept of reversible coordination bonds. Soft Matter 2020, 16, 8473–8481. [Google Scholar] [CrossRef]
- Ding, X.; Cai, Y.; Lu, G.; Hu, J.; Zhao, J.; Zheng, L.; Weng, Z.; Cheng, H.; Lin, J.; Wu, L. Stretchable superhydrophobic elastomers with on-demand tunable wettability for droplet manipulation and multi-stage reaction. J. Mater. Chem. C 2023, 11, 10069–10078. [Google Scholar] [CrossRef]
- Wu, L.; Wang, L.; Guo, Z.; Luo, J.; Xue, H.; Gao, J. Durable and multifunctional superhydrophobic coatings with excellent joule heating and electromagnetic interference shielding performance for flexible sensing electronics. ACS Appl. Mater. Interfaces 2019, 11, 34338–34347. [Google Scholar] [CrossRef]
- Ezazi, M.; Shrestha, B.; Klein, N.; Lee, D.H.; Seo, S.; Kwon, G. Self-healable superomniphobic surfaces for corrosion protection. ACS Appl. Mater. Interfaces 2019, 11, 30240–30246. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Xiang, S.; Chen, Y.; Fang, L.; Yang, B. Functional interface based on silicon artificial chamfer nanocylinder arrays (CNCAs) with underwater superoleophobicity and anisotropic properties. Nano Res. 2016, 9, 3141–3151. [Google Scholar] [CrossRef]
- Wang, J.; Kaplan, J.A.; Colson, Y.L.; Grinstaff, M.W. Stretch-induced drug delivery from superhydrophobic polymer composites: Use of crack propagation failure modes for controlling release rates. Angew. Chem. Int. Ed. 2016, 55, 2796–2800. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Keplinger, C.; Whitesides, G.M.; Suo, Z. Ionic skin. Adv. Mater. 2014, 26, 7608–7614. [Google Scholar] [CrossRef]
- Yu, B.; Kang, S.-Y.; Akthakul, A.; Ramadurai, N.; Pilkenton, M.; Patel, A.; Nashat, A.; Anderson, D.G.; Sakamoto, F.H.; Gilchrest, B.A.; et al. An elastic second skin. Nat. Mater. 2016, 15, 911–918. [Google Scholar] [CrossRef]
- Truesdell, R.; Mammoli, A.; Vorobieff, P.; van Swol, F.; Brinker, C.J. Drag reduction on a patterned superhydrophobic surface. Phys. Rev. Lett. 2006, 97, 044504. [Google Scholar] [CrossRef]
- Zhang, S.; Ouyang, X.; Li, J.; Gao, S.; Han, S.; Liu, L.; Wei, H. Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir 2015, 31, 587–593. [Google Scholar] [CrossRef]
- Shi, F.; Niu, J.; Liu, J.; Liu, F.; Wang, Z.; Zhang, X. Towards understanding why a superhydrophobic coating is needed by water striders. Adv. Mater. 2007, 19, 2257–2261. [Google Scholar] [CrossRef]
- Liu, W.; Kappl, M.; Steffen, W.; Butt, H.-J. Controlling supraparticle shape and structure by tuning colloidal interactions. J. Colloid Interface Sci. 2022, 607, 1661–1670. [Google Scholar] [CrossRef]
- Xiang, S.; Liu, W. Self-healing superhydrophobic surfaces: Healing principles and applications. Adv. Mater. Interfaces 2021, 8, 2100247. [Google Scholar] [CrossRef]
- Liu, W.; Kappl, M.; Butt, H.-J. Tuning the porosity of supraparticles. ACS Nano 2019, 13, 13949–13956. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, L. Bio-inspired design of multiscale structures for function integration. Nano Today 2011, 6, 155–175. [Google Scholar] [CrossRef]
- Wen, G.; Guo, Z.; Liu, W. Biomimetic polymeric superhydrophobic surfaces and nanostructures: From fabrication to applications. Nanoscale 2017, 9, 3338–3366. [Google Scholar] [CrossRef]
- Tian, Y.; Su, B.; Jiang, L. Interfacial material system exhibiting superwettability. Adv. Mater. 2014, 26, 6872–6897. [Google Scholar] [CrossRef]
- Laad, M.; Ghule, B. Fabrication techniques of superhydrophobic coatings: A comprehensive review. Phys. Status Solidi A 2022, 219, 2200109. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Z. Self-healing system of superhydrophobic surfaces inspired from and beyond nature. Nanoscale 2023, 15, 1493–1512. [Google Scholar] [CrossRef]
- Roca-Cusachs, P.; Rico, F.; Martínez, E.; Toset, J.; Farré, R.; Navajas, D. Stability of microfabricated high aspect ratio structures in poly(dimethylsiloxane). Langmuir 2005, 21, 5542–5548. [Google Scholar] [CrossRef]
- Chandra, D.; Yang, S. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces. Acc. Chem. Res. 2010, 43, 1080–1091. [Google Scholar] [CrossRef]
- Vrancken, N.; Vereecke, G.; Bal, S.; Sergeant, S.; Doumen, G.; Holsteyns, F.; Terryn, H.; De Gendt, S.; Xu, X. Pattern collapse of high-aspect-ratio silicon nanostructures—A parametric study. Solid State Phenom. 2016, 255, 136–140. [Google Scholar] [CrossRef]
- Ellinas, K.; Tserepi, A.; Gogolides, E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review. Adv. Colloid Interface Sci. 2017, 250, 132–157. [Google Scholar] [CrossRef]
- Lee, C.; Kim, C.-J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys. Rev. Lett. 2011, 106, 014502. [Google Scholar] [CrossRef]
- Su, X.; Li, H.; Lai, X.; Chen, Z.; Zeng, X. Highly stretchable and conductive superhydrophobic coating for flexible electronics. ACS Appl. Mater. Interfaces 2018, 10, 10587–10597. [Google Scholar] [CrossRef]
- Wang, P.; Wei, W.; Li, Z.; Duan, W.; Han, H.; Xie, Q. A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance. J. Mater. Chem. A 2020, 8, 3509–3516. [Google Scholar] [CrossRef]
- Mohd Khairuddin, F.A.; Rashid, A.A.; Leo, C.P.; Lim, G.K.; Ahmad, A.L.; Lim, H.M.; Tan, I.C.S. Recent progress in superhydrophobic rubber coatings. Prog. Org. Coat. 2022, 171, 107024. [Google Scholar] [CrossRef]
- Erdene-Ochir, O.; Do, V.-T.; Chun, D.-M. Facile fabrication of durable and flexible superhydrophobic surface with polydimethylsiloxane and silica nanoparticle coating on a polyethylene terephthalate film by hot-roll lamination. Polymer 2022, 255, 125158. [Google Scholar] [CrossRef]
- Hou, S.; Noh, I.; Shi, X.; Wang, Y.; Do Kim, H.; Ohkita, H.; Wang, B. Facile fabrication of flexible superhydrophobic surfaces with high durability and good mechanical strength through embedding silica nanoparticle into polymer substrate by spraying method. Colloids Surf. A 2023, 664, 131181. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Z.; Dutta, A.; Chen, X.; Gao, P.; Li, R.; Yan, J.; Niu, G.; Wang, Y.; Du, S.; et al. Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform. Chem. Eng. J. 2023, 465, 142774. [Google Scholar] [CrossRef]
- Son, D.; Koo, J.H.; Song, J.-K.; Kim, J.; Lee, M.; Shim, H.J.; Park, M.; Lee, M.; Kim, J.H.; Kim, D.-H. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. ACS Nano 2015, 9, 5585–5593. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, J.; Fan, Z.; Xie, P.; Wang, J.; Wang, P. A stretchable superhydrophobic coating with electrothermal ability for anti-icing application. Mater. Res. Express 2021, 8, 045009. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Cao, T.; Zhu, Y.; He, L.; Li, J.; Chen, X.; Qu, Y. Hexadecylamine modified copper nanowire coated superhydrophobic cotton fabric for antifouling, oil-water separation, and infrared reflection applications. Fibers Polym. 2022, 23, 2740–2747. [Google Scholar] [CrossRef]
- Tian, N.; Wei, J.; Zhang, J. Design of waterborne superhydrophobic fabrics with high impalement resistance and stretching stability by constructing elastic reconfigurable micro-/micro-/nanostructures. Langmuir 2023, 39, 6556–6567. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Zhang, X.; Liao, Y.; Duan, W.; Yue, Y.; Zhang, Y. Stretchable superhydrophobic supercapacitor with excellent self-healing ability. Energy Fuels 2023, 37, 5567–5576. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.; Liu, W.; Steffen, W.; Butt, H.-J. Fabrication of stretchable superamphiphobic surfaces with deformation-induced rearrangeable structures. Adv. Mater. 2022, 34, 2107901. [Google Scholar] [CrossRef]
- Lin, J.; Cai, X.; Liu, Z.; Liu, N.; Xie, M.; Zhou, B.; Wang, H.; Guo, Z. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie-Baxter wetting state. Adv. Funct. Mater. 2020, 30, 2000398. [Google Scholar] [CrossRef]
- Tian, S.; Wang, X.; Qin, W.; Yin, S.; Tan, T.; Tian, Y.; Wang, C. Ultra-robust, stretchable electrodes based on superamphiphobic surface for personal exercise monitoring. Chem. Eng. J. 2023, 452, 139421. [Google Scholar] [CrossRef]
- Sahoo, B.N.; Woo, J.; Algadi, H.; Lee, J.; Lee, T. Superhydrophobic, transparent, and stretchable 3d hierarchical wrinkled film-based sensors for wearable applications. Adv. Mater. Technol. 2019, 4, 1900230. [Google Scholar] [CrossRef]
- Jia, L.-C.; Sun, W.-J.; Xu, L.; Gao, J.-F.; Dai, K.; Yan, D.-X.; Li, Z.-M. Facile construction of a superhydrophobic surface on a textile with excellent electrical conductivity and stretchability. Ind. Eng. Chem. Res. 2020, 59, 7546–7553. [Google Scholar] [CrossRef]
- Cho, S.J.; Nam, H.; Ryu, H.; Lim, G. A rubberlike stretchable fibrous membrane with anti-wettability and gas breathability. Adv. Funct. Mater. 2013, 23, 5577–5584. [Google Scholar] [CrossRef]
- Chiou, N.-R.; Lu, C.; Guan, J.; Lee, L.J.; Epstein, A.J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2007, 2, 354–357. [Google Scholar] [CrossRef]
- Ju, J.; Yao, X.; Hou, X.; Liu, Q.; Zhang, Y.S.; Khademhosseini, A. A highly stretchable and robust non-fluorinated superhydrophobic surface. J. Mater. Chem. A 2017, 5, 16273–16280. [Google Scholar] [CrossRef]
- Hou, S.; Noh, I.; Yue, M.; Wang, Y.; Kim, H.D.; Ohkita, H.; Wang, B. Self-assembly of hierarchical porous structure for stretchable superhydrophobic films by delicately controlling the surface energy. Mater. Adv. 2023, 4, 5716–5729. [Google Scholar] [CrossRef]
- Peng, J.; Han, W.; Tan, Y.; Zhang, N.; Yin, Y.; Wang, C. A highly sensitive, superhydrophobic fabric strain sensor based on polydopamine template-assisted synergetic conductive network. Appl. Surf. Sci. 2023, 617, 156535. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Pan, L.; Yang, M.; Peng, L.; Zong, S.; Shi, Y.; Yu, G. Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix. Nano Lett. 2014, 14, 4803–4809. [Google Scholar] [CrossRef]
- Rin Yu, C.; Shanmugasundaram, A.; Lee, D.-W. Nanosilica coated polydimethylsiloxane mushroom structure: A next generation flexible, transparent, and mechanically durable superhydrophobic thin film. Appl. Surf. Sci. 2022, 583, 152500. [Google Scholar] [CrossRef]
- Wang, F.; Pi, J.; Song, F.; Feng, R.; Xu, C.; Wang, X.-L.; Wang, Y.-Z. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness. Chem. Eng. J. 2020, 381, 122539. [Google Scholar] [CrossRef]
- Song, X.; Zhang, T.; Wu, L.; Hu, R.; Qian, W.; Liu, Z.; Wang, J.; Shi, Y.; Xu, J.; Chen, K.; et al. Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates. Adv. Sci. 2022, 9, 2105623. [Google Scholar] [CrossRef]
- Hu, X.; Tang, C.; He, Z.; Shao, H.; Xu, K.; Mei, J.; Lau, W.-M. Highly stretchable superhydrophobic composite coating based on self-adaptive deformation of hierarchical structures. Small 2017, 13, 1602353. [Google Scholar] [CrossRef]
- Kim, S.H.; Jung, S.; Yoon, I.S.; Lee, C.; Oh, Y.; Hong, J.-M. Ultrastretchable conductor fabricated on skin-like hydrogel–elastomer hybrid substrates for skin electronics. Adv. Mater. 2018, 30, 1800109. [Google Scholar] [CrossRef]
- Lu, C.; Gao, Y.; Yu, S.; Zhou, H.; Wang, X.; Li, L. Non-fluorinated flexible superhydrophobic surface with excellent mechanical durability and self-cleaning performance. ACS Appl. Mater. Interfaces 2022, 14, 4750–4758. [Google Scholar] [CrossRef]
- Meng, Y.; Cheng, J.; Zhou, C. Superhydrophobic and stretchable carbon nanotube/thermoplastic urethane-based strain sensor for human motion detection. ACS Appl. Nano Mater. 2023, 6, 5871–5878. [Google Scholar] [CrossRef]
- He, Q.; Ma, Y.; Wang, X.; Jia, Y.; Li, K.; Li, A. Superhydrophobic flexible silicone rubber with stable performance, anti-icing, and multilevel rough structure. ACS Appl. Polym. Mater. 2023, 5, 4729–4737. [Google Scholar] [CrossRef]
- Li, S.; Xu, R.; Wang, J.; Yang, Y.; Fu, Q.; Pan, C. Ultra-stretchable, super-hydrophobic and high-conductive composite for wearable strain sensors with high sensitivity. J. Colloid Interface Sci. 2022, 617, 372–382. [Google Scholar] [CrossRef]
- Ding, Y.-R.; Xue, C.-H.; Guo, X.-J.; Wang, X.; Jia, S.-T.; An, Q.-F. Fabrication of TPE/CNTs film at air/water interface for flexible and superhydrophobic wearable sensors. Chem. Eng. J. 2021, 409, 128199. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, R.; Jin, B.; Li, T.; Yao, L.; Feng, L.; He, J. Superhydrophobic VO2 nanoparticle/PDMS composite films as thermochromic, anti-icing, and self-cleaning coatings. ACS Appl. Nano Mater. 2022, 5, 5599–5608. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, W.; He, G.; Zhang, P.; Zhang, Z.; Parkin, I. Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie-Baxter State. J. Mater. Chem. A 2016, 4, 14180–14186. [Google Scholar] [CrossRef]
- Lv, J.; Gong, Z.; He, Z.; Yang, J.; Chen, Y.; Tang, C.; Liu, Y.; Fan, M.; Lau, W.-M. 3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation. J. Mater. Chem. A 2017, 5, 12435–12444. [Google Scholar] [CrossRef]
- Davis, A.; Surdo, S.; Caputo, G.; Bayer, I.S.; Athanassiou, A. Environmentally benign production of stretchable and robust superhydrophobic silicone monoliths. ACS Appl. Mater. Interfaces 2018, 10, 2907–2917. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-E.; Choi, E.-Y.; Yang, H.-J.; Murthy, A.S.N.; Singh, T.; Lim, J.-M.; Im, J. Highly stretchable superhydrophobic surface by silica nanoparticle embedded electrospun fibrous mat. J. Colloid Interface Sci. 2019, 555, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, C.; Song, L.; Wang, Y.; Wei, Q.; Alamusi; Deng, Q.; Hu, N. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Compos. Sci. Technol. 2022, 218, 109148. [Google Scholar] [CrossRef]
- Lim, S.M.; Ryu, J.; Sohn, E.-H.; Lee, S.G.; Park, I.J.; Hong, J.; Kang, H.S. Flexible, elastic, and superhydrophobic/superoleophilic adhesive for reusable and durable water/oil separation coating. ACS Appl. Mater. Interfaces 2022, 14, 10825–10835. [Google Scholar] [CrossRef]
- Das, A.; Sengupta, S.; Deka, J.; Rather, A.; Raidongia, K.; Manna, U. Synthesis of fish-scale and lotus-leaf mimicked stretchable and durable multilayers. J. Mater. Chem. A 2018, 6, 15993–16002. [Google Scholar] [CrossRef]
- Wang, C.-F.; Wang, W.-N.; Lin, C.-H.; Lee, K.-J.; Hu, C.-C.; Lai, J.-Y. Facile fabrication of durable superhydrophobic films from carbon nanotube/main-chain type polybenzoxazine composites. Polymers 2019, 11, 1183. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.S.; Jeon, M.; Jeong, K.; Ryu, J.; Im, S.G. Synthesis of a stretchable but superhydrophobic polymer thin film with conformal coverage and optical transparency. Chem. Mater. 2021, 33, 1314–1320. [Google Scholar] [CrossRef]
- Lee, W.-K.; Jung, W.-B.; Nagel, S.; Odom, T. Stretchable superhydrophobicity from monolithic, threedimensional hierarchical wrinkles. Nano Lett. 2016, 16, 3774–3779. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.C.; Lim, Y.; Choi, T.J.; Chang, J.Y. Superhydrophobic and flexible microporous polymer paper. Macromol. Chem. Phys. 2017, 218, 1700219. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, J.; Wang, M.; Zhang, Y.; Zhang, Y.; He, Q. A superhydrophobic surface with aging resistance, excellent mechanical restorablity and droplet bounce properties. Soft Matter 2020, 16, 5514–5524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gao, J.; Deng, Y.; Peng, L.; Lai, X.; Lin, Z. Tunable Superhydrophobicity from 3D hierarchically nano-wrinkled micro-pyramidal architectures. Adv. Funct. Mater. 2021, 31, 2101068. [Google Scholar] [CrossRef]
- Li, W.; Zong, Y.; Liu, Q.; Sun, Y.; Li, Z.; Wang, H.; Li, Z. A highly stretchable and biodegradable superamphiphobic fluorinated polycaprolactone nanofibrous membrane for antifouling. Prog. Org. Coat. 2020, 147, 105776. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; He, Q. Stretchable superhydrophobic fluororubber fabricated by transferring mesh microstructures. Soft Matter 2023, 19, 1560–1568. [Google Scholar] [CrossRef]
- Dinh Le, T.-S.; An, J.; Huang, Y.; Vo, Q.; Boonruangkan, J.; Tran, T.; Kim, S.-W.; Sun, G.; Kim, Y.-J. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 2019, 13, 13293–13303. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, S.; Zhang, X.; Jia, P.; Tian, S.; Pan, C.; Zeng, F.; Chen, D.; Chen, Y.; Tang, J.; et al. Silk inspired in-situ interlocked superelastic microfibers for permeable stretchable triboelectric nanogenerator. Nano Energy 2022, 98, 107347. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Huang, X.-W.; Song, X.; Hu, M.; Tang, L.; Xue, H.; Gao, J. Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. J. Mater. Chem. A 2018, 6, 24523–24533. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Bu, Y.; Zhang, N.; Wang, C.; Pan, C.; Mi, L.; Guo, Z.; Liu, C.; Shen, C. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 2019, 66, 104143. [Google Scholar] [CrossRef]
- Bu, Y.; Shen, T.; Yang, W.; Yang, S.; Zhao, Y.; Liu, H.; Zheng, Y.; Liu, C.; Shen, C. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 2021, 66, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Cao, T.; Wang, T.; Sun, L.; Wang, K.; Fan, X. Antiliquid-interfering, antibacteria, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 46022–46032. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, P.; Akiyama, S.; Ujjain, S.K.; Kukobat, R.; Vallejos-Burgos, F.; Futamura, R.; Hayashi, T.; Kimura, M.; Tomanek, D.; Kaneko, K. A water-resilient carbon nanotube based strain sensor for monitoring structural integrity. J. Mater. Chem. A 2019, 7, 19996–20005. [Google Scholar] [CrossRef]
- Jia, S.; Deng, S.; Qing, Y.; He, G.; Deng, X.; Luo, S.; Wu, Y.; Guo, J.; Carmalt, C.J.; Lu, Y.; et al. A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection. Chem. Eng. J. 2021, 410, 128418. [Google Scholar] [CrossRef]
- Ding, Y.-R.; Liu, R.; Zheng, Y.; Wang, X.; Yu, Y. Fabrication of a superhydrophobic conductive porous film with water-resistance for wearable sensors. ACS Appl. Electron. Mater. 2023, 5, 440–450. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Lin, L.; Wang, H.; Huang, X.; Xue, H.; Gao, J. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 2019, 362, 89–98. [Google Scholar] [CrossRef]
- Wang, B.; Liu, H.; Chen, C.; Zhang, H.; Du, C.; Zhou, L. Facile preparation of TPE/SiO2 flexible superhydrophobic composite film with acid corrosion resistance and stretchable recyclability. Mater. Today Commun. 2020, 25, 101318. [Google Scholar] [CrossRef]
- Song, E.; Li, R.; Jin, X.; Du, H.; Huang, Y.; Zhang, J.; Xia, Y.; Fang, H.; Lee, Y.K.; Yu, K.J.; et al. Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano 2018, 12, 10317–10326. [Google Scholar] [CrossRef]
- Ye, D.; Su, J.T.; Jiang, Y.; Yin, Z.P.; Huang, Y.A. Plasma-jet-induced programmable wettability on stretchable carbon nanotube films. Mater. Today Phys. 2020, 14, 100227. [Google Scholar] [CrossRef]
- Dong, J.; Wang, D.; Peng, Y.; Zhang, C.; Lai, F.; He, G.; Ma, P.; Dong, W.; Huang, Y.; Parkin, I.P.; et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 2022, 97, 107160. [Google Scholar] [CrossRef]
- Wang, P.; Sun, B.; Liang, Y.; Han, H.; Fan, X.; Wang, W.; Yang, Z. A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application. J. Mater. Chem. A 2018, 6, 10404–10410. [Google Scholar] [CrossRef]
- Li, D.; Gou, X.; Wu, D.; Guo, Z. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy. Nanoscale 2018, 10, 6695–6703. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Luo, J.; Huang, X.; Zhang, S.; Gao, S.; Long, B.; Gao, J. Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation. Colloids Surf. A 2020, 603, 125224. [Google Scholar] [CrossRef]
- Zhou, W.; Li, G.; Wang, L.; Chen, Z.; Lin, Y. A facile method for the fabrication of a superhydrophobic polydopamine-coated copper foam for oil/water separation. Appl. Surf. Sci. 2017, 413, 140–148. [Google Scholar] [CrossRef]
- Huang, X.; Li, B.; Song, X.; Wang, L.; Shi, Y.; Hu, M.; Gao, J.; Xue, H. Stretchable, electrically conductive and superhydrophobic/superoleophilic nanofibrous membrane with a hierarchical structure for efficient oil/water separation. J. Ind. Eng. Chem. 2019, 70, 243–252. [Google Scholar] [CrossRef]
- Chen, L.; Wu, F.; Li, Y.; Wang, Y.; Si, L.; Lee, K.I.; Fei, B. Robust and elastic superhydrophobic breathable fibrous membrane with in situ grown hierarchical structures. J. Membr. Sci. 2018, 547, 93–98. [Google Scholar] [CrossRef]
- Das, A.; Parbat, D.; Shome, A.; Manna, U. Sustainable biomimicked oil/water wettability that performs under severe challenges. ACS Sustain. Chem. Eng. 2019, 7, 11350–11359. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Li, P.; Huang, J.-T. A durable and sustainable superhydrophobic surface with intertwined cellulose/SiO2 blends for anti-icing and self-cleaning applications. Mater. Des. 2022, 217, 110628. [Google Scholar] [CrossRef]
- Liu, K.; Yang, C.; Zhang, S.; Wang, Y.; Zou, R.; Alamusi; Deng, Q.; Hu, N. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent corrosion resistance and anti-icing/deicing performance. Mater. Des. 2022, 218, 110689. [Google Scholar] [CrossRef]
- Yu, M.; Liang, L.; Zhang, Y.; Wang, Z. Fabrication of a durable anti-icing composite coating based on polyurethane elastomer and silica nanoparticles. Mater. Res. Express 2022, 9, 055504. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, G.; Li, D.; Li, M.; Cao, Y.; Fu, Q.; Sun, Y. Ultralow icing adhesion of a superhydrophobic coating based on the synergistic effect of soft and stiff particles. Langmuir 2021, 37, 12016–12026. [Google Scholar] [CrossRef] [PubMed]
- Emelyanenko, A.M.; Boinovich, L.B.; Bezdomnikov, A.A.; Chulkova, E.V.; Emelyanenko, K.A. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions. ACS Appl. Mater. Interfaces 2017, 9, 24210–24219. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, J.; Chen, Y.; Lin, L.; Huang, X.; Xue, H.; Gao, J. Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors. ACS Appl. Mater. Interfaces 2019, 11, 17774–17783. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Ng, A.H.C.; Fobel, R.; Wheeler, A.R. Digital microfluidics. Annu. Rev. Anal. Chem. 2012, 5, 413–440. [Google Scholar] [CrossRef] [PubMed]
- West, J.; Becker, M.; Tombrink, S.; Manz, A. Micro total analysis systems: Latest achievements. Anal. Chem. 2008, 80, 4403–4419. [Google Scholar] [CrossRef]
- Lai, Y.; Huang, J.; Cui, Z.; Ge, M.; Zhang, K.-Q.; Chen, Z.; Chi, L. Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 2016, 12, 2203–2224. [Google Scholar] [CrossRef]
- Yong, J.; Yang, Q.; Chen, F.; Zhang, D.; Farooq, U.; Du, G.; Hou, X. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J. Mater. Chem. A 2014, 2, 5499–5507. [Google Scholar] [CrossRef]
- Yang, H.; Xu, K.; Xu, C.; Fan, D.; Cao, Y.; Xue, W.; Pang, J. Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency. Nanoscale Res. Lett. 2019, 14, 333. [Google Scholar] [CrossRef]
- Kim, D.; Jung, D.; Yoo, J.H.; Lee, Y.; Choi, W.; Lee, G.S.; Yoo, K.; Lee, J.-B. Stretchable and bendable carbon nanotube on PDMS super-lyophobic sheet for liquid metal manipulation. J. Micromech. Microeng. 2014, 24, 055018. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, L.; Wang, L.; Wu, T. Stretchable superlyophobic surfaces for nearly-lossless droplet transfer. Sens. Actuators B Chem. 2017, 244, 649–654. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, X.; Wang, D.; Xiao, W.; Huo, L.; Zhao, M.; Wang, L.; Gao, J. Flexible and superhydrophobic composites with dual polymer nanofiber and carbon nanofiber network for high-performance chemical vapor sensing and oil/water separation. ACS Appl. Mater. Interfaces 2020, 12, 47076–47089. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, L.; Guo, Z.; Li, B.; Wang, H.; Luo, J.; Huang, X.; Xue, H. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J. 2020, 381, 122778. [Google Scholar] [CrossRef]
- Liu, J.; Ye, L.; Sun, Y.; Hu, M.; Chen, F.; Wegner, S.; Mailänder, V.; Steffen, W.; Kappl, M.; Butt, H.-J. Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing. Adv. Mater. 2020, 32, 1908008. [Google Scholar] [CrossRef] [PubMed]
- Děkanovský, L.; Elashnikov, R.; Kubiková, M.; Vokatá, B.; Švorčík, V.; Lyutakov, O. Dual-action flexible antimicrobial material: Switchable self-cleaning, antifouling, and smart drug release. Adv. Funct. Mater. 2019, 29, 1901880. [Google Scholar] [CrossRef]
- Lu, H.; Shi, H.; Sathasivam, S.; Zhang, X. Strong robust superhydrophobic C/silicone monolith for photothermal ice removal. J. Mater. Sci. 2022, 57, 6963–6970. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Liu, L.; Yan, Y.; Zhang, Q.; Zhang, N.; He, L.; Liu, Y.; Zhang, X.; Tian, D.; et al. Switchable wettability and adhesion of micro/nanostructured elastomer surface via electric field for dynamic liquid droplet manipulation. Adv. Sci. 2020, 7, 2000772. [Google Scholar] [CrossRef]
- Wang, J.-N.; Liu, Y.-Q.; Zhang, Y.-L.; Feng, J.; Wang, H.; Yu, Y.-H.; Sun, H.-B. Wearable superhydrophobic elastomer skin with switchable wettability. Adv. Funct. Mater. 2018, 28, 1800625. [Google Scholar] [CrossRef]
- Li, B.; Kan, L.; Zhang, S.; Liu, Z.; Li, C.; Li, W.; Zhang, X.; Wei, H.; Ma, N. Planting carbon nanotubes onto supramolecular polymer matrices for waterproof non-contact self-healing. Nanoscale 2019, 11, 467–473. [Google Scholar] [CrossRef]
- Tian, N.; Wei, J.; Li, Y.; Li, B.; Zhang, J. Efficient scald-preventing enabled by robust polyester fabrics with hot water repellency and water impalement resistance. J. Colloid Interface Sci. 2020, 566, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yao, T.; Wu, J.; Ma, C.; Fan, Z.; Wang, Z.; Cheng, Y.; Lin, Q.; Yang, B. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Interfaces 2009, 1, 2613–2617. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.K.; Kim, H.; Lee, H.; Lim, G.; Cho, S.J. A pore-size tunable superhydrophobic membrane for high-flux membrane distillation. J. Membr. Sci. 2022, 641, 119862. [Google Scholar] [CrossRef]
- Shen, Y.L.; Wu, Y.T.; Shen, Z.H.; Chen, H. Fabrication of self-healing superhydrophobic surfaces from water-soluble polymer suspensions free of inorganic particles through polymer thermal reconstruction. Coatings 2018, 8, 144. [Google Scholar] [CrossRef]
Strategies | Materials | Application(s) | Ref. | |
---|---|---|---|---|
Covering elastomers with a layer of rough and low surface energy materials | Elastomer substrate | Coating materials | ||
Chewing gum | SiO2 | Self-cleaning | [16] | |
Silicone | PS, SiO2 | Self-cleaning | [17] | |
PET | PDMS, SiO2 | Self-cleaning | [44] | |
Cellulose | SiO2 | Self-cleaning | [46] | |
PDMS | F-SiO2 | Self-cleaning | [63] | |
PDMS | Zn | Self-cleaning | [68] | |
Elastic tape | SEBS, AgNPs | Strain-sensing | [19] | |
Natural rubber | SEBS, M-AgNPs | Strain-sensing | [41] | |
PDMS | MWCNTs, FAS | Strain-sensing | [42] | |
PDMS | APTES, MWCNTs, Graphene, AgNPS, FAS | Strain-sensing | [53] | |
PU | PDA, AgNPs, ACNTs, FCNTs-SiO2 | Strain-sensing | [54] | |
PDMS | CNTs | Strain-sensing | [55] | |
Nonwoven fabrics | MWCNT, AgNPs, PDA, PDMS | Strain-sensing | [61] | |
PU | CNTs, POSS, FAS | Strain-sensing | [69] | |
Elastic band | Carbon black, CNTs, PDMS | Strain-sensing | [71] | |
PDMS | rGO | Strain-sensing | [89] | |
Rubber band | PDA, AgNPs, PFDTS | Strain-sensing | [91] | |
PU | PDA, CNC, Graphene, SiO2 | Strain-sensing | [92] | |
Ecoflex | SiO2, P(AAM-co-HEMA)-MXene-Ag hydrogel | Strain-sensing | [94] | |
PDMS | SWCNTs | Strain-sensing | [95] | |
Silicon rubber | MWCNTS | Strain-sensing | [96] | |
PU | CNTs, PDMS | Anti-corrosion | [98] | |
SEBS | Carbon black, CNTs, TiO2, PFOTS | Anti-corrosion | [102] | |
PU | Perfluorosilane-coated graphene | Anti-corrosion | [103] | |
Polyester | Silicone nanofialments | Oil–water separation | [11] | |
Polyaniline hydrogel | SiO2, OTS | Oil–water separation | [62] | |
Kevlar nanofibrils | PDMS, PVDF | Oil–water separation | [104] | |
PU | PDMS, TiO2 | Oil–water separation | [105] | |
PU | CNTs, Methyltrichlorosilane | Oil–water separation | [107] | |
PU | CRPNC, AGO | Oil–water separation | [109] | |
PAI | F-SiO2 | Anti-icing | [45] | |
PDMS | Graphene, FAS | Anti-icing | [48] | |
PAI, PU | F-SiO2 | Anti-icing, Antifouling | [60] | |
Silicone rubber | AlN | Anti-icing | [70] | |
Cotton | TOC-SiO2, PDMS | Anti-icing | [110] | |
PU | F-SiO2 | Anti-icing | [112] | |
Silicone rubber | Methoxy-{3-[(2,2,3,3,4,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl)-oxy]-propyl}-silane | Anti-icing | [114] | |
Rubber band | AgNPs, PDMS | Anti-icing | [115] | |
cis-1,4-polyisoprene | PDMS, Silicone nanofilaments | Droplet manipulation | [52] | |
EVA | PFDTS | Droplet manipulation | [122] | |
Cellulose/polyester | PCL, PGC-C18 | Drug delivery | [22] | |
PET | F-SiO2 | Antifouling, Self-cleaning | [50] | |
Rubber | QAS@SiO2, SEBS | Antibiofouling | [64] | |
PU | PANI, PTFE | Underwater gas sensing | [57] | |
PVA/Carrageenan/MWCNT | MWCNTs, FAS | Supercapacitor | [51] | |
Polyester | PDMS, AgNPs | Electrical-heating | [56] | |
PDMS | Silicon nanowires | Field effect transistors | [65] | |
Ecoflex elastomer | AgNPs | Elastic conductor | [67] | |
Silicone | SiO2 | - | [59] | |
Rubber | Carbon black, Polybutadiene | - | [66] | |
Hybridizing functional materials in elastomers | Elastomer | Functional materials | ||
PDMS | - | Self-cleaning | [76] | |
CRPNC | Graphene oxide | Self-cleaning | [80] | |
TPE | CNTs | Strain-sensing | [72] | |
PDMS | CNTs | Strain-sensing | [78] | |
PU | Carbon black, PFDTS | Strain-sensing | [97] | |
SBS | SiO2, PFDTS | Anti-corrosion | [77] | |
P(B-oda) | CNTs | Anti-corrosion | [81] | |
TPE | SiO2, FAS-17 | Anti-corrosion | [99] | |
PDMS | CNTs | Anti-corrosion | [101] | |
PDMS | SiO2 | Oil–water separation | [74,75] | |
ECA, PCL | F-SiO2 | Oil–water separation | [79] | |
PU | PDA | Oil–water separation | [108] | |
PDMS | VO2 | Anti-icing | [73] | |
3M VHB 4910 film | TiO2 | Droplet manipulation | [128] | |
Silicone rubber | Graphene | Anti-biofouling | [6] | |
PDMS | SiO2, STAC, PFDTS | Anti-biofouling | [8,18] | |
PDMS | TiO2 | Blood repellent dressing | [125] | |
PDMS | PPy | Antimicrobial | [126] | |
Directly manufacturing rough surfaces utilizing bulk elastomers | Silicone rubber | Self-cleaning | [85] | |
PDMS | Droplet manipulation | [83,86,129] | ||
Fluororubber | Droplet manipulation | [88] | ||
PCL-b-PTFOA | Antifouling | [87] | ||
PFOA-co-V3D3 | Transparent film | [82] | ||
MPP | - | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, X.; Xiang, S.; Lian, Y.; Tao, S. Stretchable Superhydrophobic Surfaces: From Basic Fabrication Strategies to Applications. Processes 2024, 12, 124. https://doi.org/10.3390/pr12010124
Liu W, Wang X, Xiang S, Lian Y, Tao S. Stretchable Superhydrophobic Surfaces: From Basic Fabrication Strategies to Applications. Processes. 2024; 12(1):124. https://doi.org/10.3390/pr12010124
Chicago/Turabian StyleLiu, Wendong, Xiaojing Wang, Siyuan Xiang, Yuechang Lian, and Shengyang Tao. 2024. "Stretchable Superhydrophobic Surfaces: From Basic Fabrication Strategies to Applications" Processes 12, no. 1: 124. https://doi.org/10.3390/pr12010124