Next Article in Journal
Luminescent Metal Nanoclusters for Potential Chemosensor Applications
Next Article in Special Issue
Recent Advances in the Detection of Neurotransmitters
Previous Article in Journal
Towards Rational Chemosensor Design through Improved Understanding of Experimental Parameter Variation and Tolerance in Cyclodextrin-Promoted Fluorescence Detection
Previous Article in Special Issue
Polymeric Materials for Printed-Based Electroanalytical (Bio)Applications
Article Menu

Export Article

Open AccessFeature PaperArticle
Chemosensors 2017, 5(4), 35; doi:10.3390/chemosensors5040035

Biochars as Innovative Humidity Sensing Materials

1
Politecnico di Torino, Department of Applied Science and Technology, INSTM R.U PoliTO-LINCE Laboratory, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
2
Politecnico di Torino, Department of Applied Science and Technology, Carbon Group, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
*
Author to whom correspondence should be addressed.
Received: 30 October 2017 / Revised: 6 December 2017 / Accepted: 11 December 2017 / Published: 12 December 2017
(This article belongs to the Special Issue Polymers Based Chemical Sensors)
View Full-Text   |   Download PDF [5501 KB, uploaded 12 December 2017]   |  

Abstract

In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP) was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH) at room temperature and showed a response starting around 5 RH%, varying the impedance of 2 orders of magnitude after exposure to almost 100% relative humidity. In both cases, biochar materials are behaving as p-type semiconductors under low amounts of humidity. On the contrary, for higher RH values, the impedance decreased due to water molecules adsorption. When PVP is added to SWP700 biochar, n-p heterojunctions are formed between the two semiconductors, leading to a higher sensitivity at low RH values for the sensors SWP700-10% PVP and SWP700-20% PVP with respect to pure SWP700 sensor. Finally, response and recovery times were both reasonably fast (in the order of 1 min). View Full-Text
Keywords: humidity sensor; biochar; polyvinylpyrrolidone; n-p heterojunction humidity sensor; biochar; polyvinylpyrrolidone; n-p heterojunction
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ziegler, D.; Palmero, P.; Giorcelli, M.; Tagliaferro, A.; Tulliani, J.-M. Biochars as Innovative Humidity Sensing Materials. Chemosensors 2017, 5, 35.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Chemosensors EISSN 2227-9040 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top