Next Article in Journal
Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides
Previous Article in Journal
Comparison of the Sensing Properties of ZnO Nanowalls-Based Sensors toward Low Concentrations of CO and NO2
Article Menu

Export Article

Open AccessFeature PaperArticle
Chemosensors 2017, 5(3), 22; doi:10.3390/chemosensors5030022

vQRS Based on Hybrids of CNT with PMMA-POSS and PS-POSS Copolymers to Reach the Sub-PPM Detection of Ammonia and Formaldehyde at Room Temperature Despite Moisture

1
Smart Plastics Group, Bretagne Loire University (UBL), IRDL CNRS 3744-UBS, Lorient 56321, France
2
Indian Institute of Technology (IIT), Centre for Polymer Science & Engineering, Delhi 110016, India
*
Author to whom correspondence should be addressed.
Received: 11 June 2017 / Revised: 7 July 2017 / Accepted: 10 July 2017 / Published: 12 July 2017
(This article belongs to the Special Issue Polymers Based Chemical Sensors)
View Full-Text   |   Download PDF [3165 KB, uploaded 13 July 2017]   |  

Abstract

Nanocomposite-based quantum resistive vapour sensors (vQRS) have been developed from the assembly of hybrid copolymers of polyhedral oligomeric silsesquioxane (POSS) and poly(methyl methacrylate) (PMMA) or poly(styrene) (PS) with carbon nanotubes (CNT). The originality of the resulting conducting architecture is expected to be responsible for the ability of the transducer to detect sub-ppm concentrations of ammonia and formaldehyde at room temperature despite the presence of humidity. In particular, the boosting effect of POSS is evidenced in CNT-based nanocomposite vQRS. The additive fabrication by spraying layer-by-layer provides (sLbL) is an effective method to control the reproducibility of the transducers’ chemo-resistive responses. In dry atmosphere, the two types of sensors showed a high sensitivity towards both hazardous gases, as they were able to detect 300 ppb of formaldehyde and 500 ppb of ammonia with a sufficiently good signal to noise ratio (SNR > 10). They also exhibited a quick response times less than 5 s for both vapours and, even in the presence of 100 ppm of water, they were able to detect small amounts of gases (1.5 ppm of NH3 and 9 ppm of CH2O). The results suggest promising applications of POSS-based vQRS for air quality or volatolome monitoring. View Full-Text
Keywords: quantum resistive vapour sensor; toxic gases sub ppm detection; ammonia; formaldehyde; room-temperature; nanocomposite; humidity; spraying layer-by-layer quantum resistive vapour sensor; toxic gases sub ppm detection; ammonia; formaldehyde; room-temperature; nanocomposite; humidity; spraying layer-by-layer
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Sachan, A.; Castro, M.; Choudhary, V.; Feller, J.-F. vQRS Based on Hybrids of CNT with PMMA-POSS and PS-POSS Copolymers to Reach the Sub-PPM Detection of Ammonia and Formaldehyde at Room Temperature Despite Moisture. Chemosensors 2017, 5, 22.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Chemosensors EISSN 2227-9040 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top