The Changing Nature of Hazardous Weather and Implications for Transportation: Example from Oklahoma, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weather and Climate Information Needs Survey
2.2. Climate Data
2.3. Domain and Temporal Range
3. Results
3.1. Temperature and Freeze–Thaw Cycles
3.1.1. Freeze–Thaw Cycles
3.1.2. Annual Highest and Lowest Temperatures
3.1.3. Extreme Heat
3.2. Winter Weather and Extreme Precipitation
3.2.1. Snow and Ice
3.2.2. Heavy Precipitation
4. Discussion
4.1. Contributions to Projection Spread
4.2. Transportation Implications
5. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Weather and Climate Information Needs Survey
References
- Liu, A.; Soneja, S.I.; Jiang, C.; Huang, C.; Kerns, T.; Beck, K.; Mitchell, K.; Sapkota, A. Frequency of extreme weather events and increased risk of motor vehicle collision in Maryland. Sci. Total Environ. 2017, 580, 550–555. [Google Scholar] [CrossRef]
- Black, A.W.; Mote, T.L. Characteristics of Winter Precipitation Related Transportation Fatalities in the United States. Wea. Clim. Soc. 2015, 7, 133–145. [Google Scholar] [CrossRef]
- Markolf, S.; Luskova, M. Transportation resilience to climate change and extreme weather events-Beyond risk and robustness. Transp. Policy 2019, 74, 174–186. [Google Scholar] [CrossRef]
- Venner, M.; Zamurs, J. Increased Maintenance Coasts of Extreme Weather Events. Transp. Res. Board. J. Transp. Res. Board 2012, 2292, 20–28. [Google Scholar] [CrossRef]
- Neumann, J.; Chinowsky, P.; Helman, J.; Black, M.; Fant, C.; Strzepek, K.; Martinich, J. Climate effects on US infrastructure: The economics of adaptation for rail, roads, and coastal development. Clim. Chang. 2021, 167, 44. [Google Scholar] [CrossRef] [PubMed]
- Reidmiller, D.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Lewis, K.L.; Maycock, T.K.; Stewart, B.C. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; U.S. Global Change Research Program: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Hayhoe, K.; Stoner, A.; Abeysundara, S.; Daniel, J.S.; Jacobs, J.M.; Kirshen, P.; Benestad, R. Climate projections for transportation infrastructure planning, operations and maintenance, and design. Transp. Res. Rec. J. Transp. Res. Board 2015, 2510, 90–97. [Google Scholar] [CrossRef]
- National Academies of Science, Engineering, and Medicine Transportation Research Board. Applying Climate Change Information to Hydrologic and Hydraulic Design of Transportation Infrastructure. 2019. Available online: https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4046 (accessed on 11 January 2022).
- Rowan, E.; Evans, C.; Riley-Gilbert, M.; Hyman, R.; Kafalenos, R.; Beucler, B.; Rodehorst, B.; Choate, A.; Schultz, P. Assessing the sensitivity of transportation assets to extreme weather events and climate change. Transp. Res. Board J. Transp. Res. Board 2013, 2326, 16–23. [Google Scholar] [CrossRef]
- Rowan, E.; Snow, C.; Choate, A.; Rodehurst, B.; Asam, S.; Hyman, R.; Kafalenos, R.; Gye, A. Indicator Approach for Assessing Climate Change Vulnerability in Transportation Infrastructure. Transp. Res. Board J. Transp. Res. Board 2014, 2459, 18–28. [Google Scholar] [CrossRef]
- Vajda, A.; Tuomenvirta, H.; Jokinen, P. Observed and Future Changes of Extreme Winter Events in Europe with Implications for Transportation. In Proceedings of the SIWEC ID0040, Helsinki, Finland, 22–25 May 2012; p. 8. Available online: http://www.sirwec.org/Papers/helsinki/40.pdf (accessed on 1 April 2018).
- Melvin, A.; Larson, P.; Boehlert, B.; Neumann, J.E.; Chinowsky, P.; Espinet, X.; Martinich, J.; Baumann, M.S.; Rennels, L.; Bothner, A.; et al. Climate Damages to Alaska Public Infrastructure. Proc. Natl. Acad. Sci. USA 2017, 114, 122–131. [Google Scholar] [CrossRef]
- Winguth, A.; Lee, J.H.; Ko, Y.; UTA, and North Central Texas Vulnerability Assessment Team. Climate Change/Extreme Weather Vulnerability and Risk Assessment for Transportation Infrastructure in Dallas and Tarrant Counties. Fed. Highw. Adm. 2015, 52. Available online: https://www.fhwa.dot.gov/environment/sustainability/resilience/pilots/2013-2015_pilots/nctcog/final_report/nctogfinal.pdf (accessed on 1 June 2017).
- CAMPO. Central Texas Extreme Weather and Climate Change Vulnerability Assessment of Regional Transportation Infrastructure. Final Report. Fed. Highw. Adm. Camb. Syst. Inc. 2015, 220. Available online: https://www.fhwa.dot.gov/environment/sustainability/resilience/pilots/2013-2015_pilots/campo/final_report/index.cfm (accessed on 1 June 2017).
- ASCE (American Society of Civil Engineers). Report Card for Oklahoma’s Infrastructure. 2013. Available online: https://www.infrastructurereportcard.org/wp-content/uploads/2016/10/ASCE-OK-2013-Report-Card.pdf (accessed on 1 August 2017).
- ASCE. Report Card for America’ Infrastructure: Oklahoma Infrastructure. 2021. Available online: https://infrastructurereportcard.org/state-item/oklahoma/ (accessed on 9 October 2022).
- Oklahoma Dept. Transportation (ODOT). 2015-40 Oklahoma Long Range Transportation Plan: Moving Oklahoma Forward. 2015. Available online: http://www.okladot.state.ok.us/p-r-div/lrp_2015_2040/2040_LRTP_Full_Document.pdf (accessed on 2 May 2018).
- Asam, S.; Bhat, C.; Dix, B.; Bauer, J.; Gopalakrishna, D. Climate Change Adaptation Guide for Transportation Systems Management, Operations, and Maintenance; U.S. Department of Transportation: Washington, DC, USA, 2015; p. 86. Available online: https://ops.fhwa.dot.gov/publications/fhwahop15026/fhwahop15026.pdf (accessed on 1 June 2017).
- Choate, A.; Dix, B.; Rodehorst, B.; Wong, A.; Jaglom, W.; Keller, J.; Lennon, J.; Dorney, C.; Kuchibhotla, R.; Jagannath, M.; et al. Synthesis of Approaches for Addressing Resilience in Project Development; Federal Highways Administration Technical Report FHWA-HEP-17-082; Federal Highways Administration: Washington, DC, USA, 2017; p. 224. Available online: https://www.fhwa.dot.gov/environment/sustainability/resilience/ongoing_and_current_research/teacr/synthesis/fhwahep17082.pdf (accessed on 1 April 2018).
- Meyer, M.D.; Rowan, E.; Snow, C.; Choate, A. Impacts of Extreme Weather on Transportation: National Symposium Summary; ICF International: Roston, VA, USA, 2013; Available online: https://climatechange.transportation.org/pdf/2013_symposium/AASHTO_EWESymposium_2013.pdf (accessed on 21 July 2022).
- Douglas, E.; Jacobs, J.; Hayhoe, K.; Silka, L.; Daniel, J.; Collins, M.; Alipour, A.; Anderson, B.; Hebson, C.; Mecray, E.; et al. Progress and Challenges in Incorporating Climate Change Information into Transportation Research and Design. J. Infrastruct. Syst. 2017, 23, 9. [Google Scholar] [CrossRef] [Green Version]
- Quinn, A.D.; Ferranti, E.S.; Hodgkinson, S.P.; Jack, A.R.; Beckgord, J.; Dora, J.M. Adaptation becoming Business-as-Usual: A Framework for Climate Change Ready Transportation Infrastructure. Infrastructures 2018, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- McPherson, R.A.; Mullens, E.D. Trends in Cold Extremes and Winter Weather for the SPTC Region. South. Plains Transp. Cent. Final Rep. 2017, 131. Available online: http://www.sptc.org/projects/ (accessed on 4 January 2023).
- Wang, S.-Y.; Huang, W.-R.; Hsu, H.-H.; Gillies, R.R. Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains. Geophys. Res. Lett. 2015, 42, 8140–8146. [Google Scholar] [CrossRef] [Green Version]
- VanBuskirk, O.; Ćwik, P.; McPherson, R.A.; Lazrus, H.; Martin, E.; Kuster, C.; Mullens, E. Listening to Stakeholders: Initiating Research on Sub-seasonal to Seasonal Heavy Precipitation Events in the Contiguous, U.S. by First Understanding What Stakeholders Need. Bull. Am. Meteorol. Soc. 2021, 102, E1972–E1986. Available online: https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-20-0313.1/BAMS-D-20-0313.1.xml (accessed on 4 January 2023). [CrossRef]
- Gutiérrez, J.M.; San-Martín, D.; Brands, S.; Manzanas, R.; Herrera, S. Reassessing Statistical Downscaling Techniques for Their Robust Application under Climate Change Conditions. J. Clim. 2013, 26, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 2012, 32, 772–780. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical Downscaling Using Localized Constructed Analogs (LOCA). J. Hydrometeor. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Livneh, B.; Rosenburg, E.A.; Lin, C.; Nijssen, B.; Mishra, V.; Andreadis, K.M.; Maurer, E.; Lettenmaier, D.P. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions. J. Clim. 2013, 26, 9384–9392. [Google Scholar] [CrossRef]
- Mullens, E.D.; McPherson, R.A. Quantitative scenarios for future hydrologic extremes in the U.S. Southern Great Plains. Int. J. Climatol. 2019, 39, 2659–2676. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Carter, T.R. Climate and Socio-economic Scenarios for Climate Change Research and Assessment: Reconciling the new with the old. Clim. Chang. 2013, 122, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Pierce, D.W.; Cayan, D.R.; Maurer, E.P.; Abatzoglou, J.T.; Hegewisch, K.C. Improved Bias Correction Techniques for Hydrological Simulations of Climate Change. J. Hydrometeor. 2015, 16, 2421–2442. [Google Scholar] [CrossRef]
- Oklahoma Dept. Transportation (ODOT). 8-Year Construction Work Plan. 2017. Available online: https://www.ok.gov/odot/Programs_and_Projects/8_Year_Construction_Work_Plan/ (accessed on 1 June 2017).
- Guttman, N.B.; Quayle, R.G. A historical perspective of US climate divisions. Bull. Am. Meteorol. Soc. 1996, 77, 293–303. [Google Scholar] [CrossRef]
- Hershfield, D.M. The Frequency of Freeze-Thaw Cycles. J. Appl. Meteor. 1974, 13, 348–354. [Google Scholar] [CrossRef]
- Haley, J.S. Climatology of Freeze-Thaw Days in the Conterminous United States: 1982–2009. Master’s Thesis, Kent State University, Kent, OH, USA, 2011. Available online: https://etd.ohiolink.edu/!etd.send_file?accession=kent1302547210&disposition=inline (accessed on 1 February 2015).
- Friedman, J.H. A Variable Span Smoother; Technical Report (5); Laboratory for Computational Statistics, Department of Statistics, Stanford University: Stanford, CA, USA, 1984. [Google Scholar]
- McPherson, R.A.; Fiebrich, C.; Crawford, K.C.; Elliott, R.L.; Kilby, J.R.; Grimsley, D.L.; Martinez, J.E.; Basara, J.B.; Illston, B.G.; Morris, D.A.; et al. Shrivastava, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol. 2007, 24, 301–321. [Google Scholar] [CrossRef] [Green Version]
- National Weather Service (NWS) Norman. Quick Hot Temperature Facts for Oklahoma City, OK (Since 1891). 2012. Available online: http://www.crh.noaa.gov/oun/?n=summertimetemp_facts_okc (accessed on 1 August 2017).
- National Weather Service (NWS) Phoenix. When Does the First and Last 100 °F Day Typically Occur? 2016. Available online: https://www.wrh.noaa.gov/psr/climate/FirstLastHeatDays.php (accessed on 1 June 2018).
- Mullens, E.D.; McPherson, R.A. Oklahoma: A weather and climate trends roadmap. South Cent. Clim. Sci. Cent. Norman OK 2017, 35. Available online: https://climateprojections.wixsite.com/transportation/oklahoma (accessed on 4 January 2023).
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015, 42, 6819–6828. [Google Scholar] [CrossRef] [Green Version]
- Cowan, T.; Hegerl, G.C.; Colfescu, I.; Bollasina, M.; Purich, A.; Boschat, G. Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl. J. Clim. 2017, 30, 2437–2461. [Google Scholar] [CrossRef]
- Ryu, J.H.; Hayhoe, K. Observed and CMIP5 modeled influence of large-scale circulation on summer precipitation and drought in the South-Central United States. Clim. Dyn. 2017, 49, 4293–4310. [Google Scholar] [CrossRef]
- Mullens, E.D.; McPherson, R.A. A Multi-Algorithm Reanalysis-based Freezing Precipitation Dataset for Climate Studies in the South-Central US. J. Appl. Meteorol. Clim. 2017, 56, 495–517. [Google Scholar] [CrossRef]
- Mullens, E.D.; Hocker, J.; Shafer, M. Trends in Heavy Precipitation in the Southern USA. Weather 2013, 68, 311–316. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Brooks, H.; Kossin, J.; Lawrimore, J.H.; Arndt, D.; Bosart, L.F.; Changnon, D.; Cutter, S.; Doesken, N.J.; et al. Monitoring and Understanding Trends in Extreme Storms: State of Knowledge. Bull. Amer. Meteor. Soc. 2013, 94, 499–514. [Google Scholar] [CrossRef]
- Powell, E.J.; Keim, B.D. Trends in Daily Temperature and Precipitation Extremes for the Southeastern United States: 1948–2012. J. Clim. 2015, 28, 1592–1612. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- Perica, S.; Martin, D.; Pavlovic, S.; Roy, I.; Laurent, M.S.; Trypaluk, C.; Unruh, D.; Yekta, M.; Bonnin, G. NOAA Atlas 14—Frequency Atlas of the United States (Midwestern States). 2013. Available online: http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume8.pdf (accessed on 1 July 2017).
- Wang, G.; Kirchhoff, C.; Seth, A.; Abatzoglou, J.T.; Livneh, B.; Pierce, D.W.; Fomenko, L.; Ding, T. Projected Changes of Precipitation Characteristics Depend on Downscaling Method and Training Data: MACA vs. LOCA using the U.S. Northeast as an Example. J. Hydrometeor. 2015, 21, 2739–2758. [Google Scholar] [CrossRef]
- Lopez-Cantu, T.; Prein, A.F.; Samaras, C. Uncertainties in US Extreme Precipitation from Downscaled Climate Projections. Geophys. Res. Lett. 2020, 47, 11. [Google Scholar] [CrossRef]
- Dixon, K.W.; Lanzante, J.R.; Nath, M.J.; Hayhoe, K.; Stoner, A.; Radhakrishnan, A.; Balaji, V.; Gaitán, C.F. Evaluating the stationarity assumption in statistically downscaled climate projections: Is past performance an indicator of future results? Clim. Chang. 2016, 135, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Alder, J.R.; Hostetler, S.W. The Dependence of Hydroclimate Projections in Snow-Dominated regions of the Western United States on the Choice of Statistically Downscaled Climate Data. Water Resour. Res. 2019, 55, 2279–2300. [Google Scholar] [CrossRef]
- Neumann, J.E.; Price, J.; Chinowsky, P.; Wright, L.; Ludwig, L.; Streeter, R.; Jones, R.; Smith, J.B.; Perkins, W.; Jantarasami, L.; et al. Climate change risks to US Infrastructure: Impacts on Roads, Bridges, Coastal Development, and Urban Drainage. Clim. Chang. 2014, 131, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Bolinger, R.A.; Brown, V.M.; Fuhrmann, C.M.; Gleason, K.L.; Andrew Joyner, T.; Keim, B.D.; Lewis, A.; Nielsen-Gammon, J.; Stiles, C.J.; Tollefson, W.; et al. An assessment of the extremes and impacts of the February 2021 South-Central, U.S Arctic outbreak, and how climate services can help. Weather Clim. Extrem. 2022, 36, 17. [Google Scholar] [CrossRef]
- Yavuzturk, C.; Ksaibati, K. Assessment of Temperature Fluctuations in Asphalt Pavements due to Thermal Environmental Conditions using a Two-Dimensional Transient Finite Difference Approach. Transp. Res. Board MPC Rep. No. 02-136 2002, 17, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Mallick, R.B.; Radzicki, M.J.; Daniel, J.S.; Jacobs, J.M. Use of system dynamics to understand the long term impact of climate change on pavement performance and maintenance cost. Transp. Res. Board J. Transp. Res. Board 2014, 2455, 1–9. [Google Scholar] [CrossRef]
- Carter, B.J.; Gregory, M.S. Soil Map of Oklahoma. Okla. Geol. Surv. Educ. Publ. 2008, 9, 16–20. Available online: http://www.ogs.ou.edu/pubsscanned/EP9p16_19soil_veg_cl.pdf (accessed on 1 August 2017).
- Ashley, W.S.; Strader, S.; Dziubla, D.C.; Haberlie, A. Driving Blind: Weather-Related Vision Hazards and Fatal Motor Vehicle Crashes. Bull. Amer. Meteor. Soc. 2015, 96, 755–778. [Google Scholar] [CrossRef]
- ICF International. 2013–2015 Climate Resilience Pilot Program: Outcomes, Lessons Learned, and Recommendations; Technical Report FHWA-HEP-16-079; Federal Highway Administration: Washington, DC, USA, 2016; p. 58. Available online: https://www.fhwa.dot.gov/environment/sustainability/resilience/pilots/2013-2015_pilots/final_report/fhwahep16079.pdf (accessed on 1 August 2017).
- Maurer, E.P.; Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R. The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci. 2010, 14, 1125–1138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mullens, E.; McPherson, R. The Changing Nature of Hazardous Weather and Implications for Transportation: Example from Oklahoma, USA. Climate 2023, 11, 32. https://doi.org/10.3390/cli11020032
Mullens E, McPherson R. The Changing Nature of Hazardous Weather and Implications for Transportation: Example from Oklahoma, USA. Climate. 2023; 11(2):32. https://doi.org/10.3390/cli11020032
Chicago/Turabian StyleMullens, Esther, and Renee McPherson. 2023. "The Changing Nature of Hazardous Weather and Implications for Transportation: Example from Oklahoma, USA" Climate 11, no. 2: 32. https://doi.org/10.3390/cli11020032