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2.2 Climate Data 
Data used for this work 

Table S1: Information on the datasets used in this analysis, including historical observational gridded 

products and climate model data. Temporal and spatial resolutions, data sources, and variables calculated 

for this work are listed for each dataset.  

 
 
 

 

 
 
 

 

 
 

 
 

 

 
 
 

 

Scenarios 
Mullens and McPherson (2019) used an approach whereby climate models are distributed into 

groups based on the magnitude of their temperature and precipitation changes relative to the total multi-

Model and/or Observational 
Dataset 

Temporal/Spatial resolution, and Source Weather/Climate 
Variables Calculated 

Topographic Weather 
(TopoWx) 

800m, daily 1948-2012. Developed by 
Jared Oyler et al. (Oyler et al. 2014).  

Freeze-thaw cycles  

Daymet  800m, daily 1980-2016, Developed by 
NASA and Oak Ridge National Lab 

Freeze-thaw cycles  

Livneh  6.6 km, daily 1915-2011 (1950-2005 used 
in this project). Developed by B. Livneh et 
al. (Livneh et al. 2013). Available from 
NOAA Earth System Resources Lab 
(ERSL).  

All 

Multivariate Adaptive 
Constructed Analogues 
(MACAv2LIVNEH) 

6.6 km, daily 1950-2100, emission 
pathways rcp4.5 and rcp8.5. Developed by 
Abatzoglou et al. (Abatzoglou and Brown, 
2012). Models used included: BNU-ESM, 
CanESM2, CCSM4, CNRM-CM5, CSIRO-
Mk3-6-0, GFDL-ESM2G, HadGEM2-CC, 
HadGEM2-ES, inmcm4, IPSL-CM5A-LR, 
IPSL-CM5A-MR, MIROC5, MIROC-ESM, 
MIROC-ESM-CHEM, NorESM1-M 

 All 

Localized Constructed 
Analogues (LOCA) 

1/16th degree (~6.6 km), daily 1950-2100, 
emission scenarios include rcp4.5 and 
rcp8.5. Developed Pierce et al. (e.g., Pierce 
et al. 2014). Models used were equivalent 
to that of MACA where available (13 
models total).  

All 
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model median changes in those categories (Fig. S1, Table S2). This was performed separately for mid-

range and high emissions categories. Here, we perform a similar technique, using the MACA(v2 Livneh) 

and LOCA data (n=28, across 15 individual GCMs, two that were only available for MACA). We once 

again select models in the “Hot/Dry” (HD) and “Warm/Wet” (WW) categories, as these are likely to 

represent the largest deviations from the median in terms of their climate implications. Because most 

models are the same across the two SD methods, we include both models (one from MACA, and its 

LOCA equivalent where applicable taking the top two models in each category (4 projections when 

including the two methods). Other techniques used in the aforementioned paper apply, such as the need 

for any “Warm/Wet” category model to have a positive change in precipitation in the future climate, 

despite cases where the median of all models falls below zero (i.e., a drying of the climate).  

The goal of this scenario approach is to examine whether the models in these categories show 

secular and/or distinctive trends when compared with the remaining sample. For example, do the WD 

models necessarily imply a greater magnitude of increase in extreme temperatures, or a lesser amount in 

extreme precipitation? While Mullens and McPherson (2019) answer this to some extent within the 

Southern Plains region, we include this here for the smaller spatial scale of central Oklahoma, as well as 

to continue to test the hypothesis as to whether we can use a smaller sample of climate models to capture 

a robust range of futures, rather than needing to use the entire sample. It may also be useful to the reader 

to see where each individual model in this sample lies with respect to its general temperature and 

precipitation changes in the late 21st century, as well as the extent to which MACA and LOCA differ.  

 

It can also be helpful to examine the spatial distributions of temperature and precipitation change 

in the late 21st century, shown in Fig. S3 for MACA and S4 for LOCA, for the state of Oklahoma, and 

using RCP8.5. Ultimately the two SD methods replicate the general patterns of change similarly, though 

on the regional to local scales, inclusive of central Oklahoma, there are more substantial variations in the 

magnitudes of both variables.  
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Figure S1: MACA and LOCA average precipitation change (average annual 2061-90 minus historical 

baseline of 1971-2000) for central Oklahoma (climate division 5) on the left – (a) RCP4.5 (midrange), (c) 

RCP8.5 (high). Different markers and colors identify MACA (M, red circle) from LOCA (L, purple 

square). The y-axis is temperature in degrees Celsius, and the x-axis is precipitation in inches. The black 

horizonal and vertical lines denote the median values of change for temperature and precipitation across 

all of the sample respectively. Panels (b) and (d) show the differences of the LOCA projections compared 

with MACA (i.e., MACA minus LOCA) over this period, expressed as a simple positive or negative 

magnitude. Note that BNU-ESM and CanESM2 are exclusive to MACA and were not analyzed.  

 

Table S2: Models in the HD and WW categories used in this work.  

Scenario RCP4.5 RCP8.5 

HD (Hot/Dry) IPSL-CM5A-MR; HadGEM2-CC IPSL-CM5A-MR; HadGEM2-CC 

WW (Warm/Wet) Inmcm4; IPSL-CM5A-LR; BNU-

ESM (MACA only) 

CCSM4; CNRM-CM5; 

CanESM2 (MACA only) 
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Figure S2: Spatial temperature (degC) and precipitation (%) changes from historical baseline in the late 

21st century with high (RCP8.5) emissions – MACA SD method. Highlighted models indicate all those 

which have overlap with LOCA.  
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Figure S3: As Fig. S3, but for LOCA. Note the relative ‘noisiness’ of the temperature change projection 

in comparison to MACA. Identical plotting methods were applied.   
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3. Climate Projections 

Freeze-Thaw cycles  

 
Figure S4: Historical freeze thaw cycle (FTC) trends, with magnitudes between 45-90 (days annually), 

and enhanced freeze thaw cycles (EFTC), with magnitudes between 5 and 25 (days annually). The time 

series displays four observational data products (Daymet, TopoWx, Maurer, and Livneh), regridded to a 

common 6.6km grid. Dashed lines are the 10-year moving averages for each (color coded to match 

applicable observation). Maurer data (Maurer et al. 2011) is an additional gridded observational product 

not used further in the main manuscript. It has a spatial resolution of 12.2 km, and temporal daily 

resolution from 1960-1999. It has been used to train older SD datasets using CMIP3, such as ARRM, 

used in Mullens and McPherson (2019).  

 

Differences between statistically-downscaled datasets LOCA and MACAv2LIVNEH 

 
The figure overleaf shows distributions of magnitudes for the various variables examined in section 3 of 

the manuscript, based on all the applicable models that have a direct match in both SD datasets (i.e., 

excluding BNU-ESM and CanESM2 which are only in the MACA dataset).  
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Figure S6: Historical (1971-2000) and late 21st century (2061-90, RCP8.5) distributions of the magnitude 

of key variables from section 3 – black solid line is MACA, grey dashed line is LOCA, the red dashed 

line is Livneh, and the blue dashed line TopoWx (FTC only). Asterisks indicate where the LOCA dataset 

is statistically distinct from either MACA and/or the differing x and y-axis scales.  

 

A key finding from this brief distribution comparison is that the SD technique is most divergent between 

LOCA and MACA for annual maxima in precipitation, where the former has a tendency for a shorter tail, 

and lower mean value. LOCA in the historical period is significantly lower in the mean compared to both 
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MACA and Livneh. In the future projection, LOCA remains significantly lower than MACA, and the tail 

of the distribution is notably lengthened for MACA. Other significant differences were found between 

future LOCA and MACA projections for FTC, where the former showed higher counts than the latter, 

presumably resulting from LOCA’s tendency for cooler minimum temperatures as shown in Fig. 3 of the 

main manuscript. The two SD approaches showed similar distributions for the majority of the remaining 

variables, particularly for future extreme heat and future winter precipitation frequency/intensity.  

 

4. Discussion  

 
4.1 Examining variance by model type, emissions, and SD data (supplement to Fig. 9).  
 

How important are the different possible sources of projection spread (or uncertainty) relative to one 

another? This was the basic question that Figure 9 sought to address. The three dominant sources of 

spread are the emissions pathway (RCP4.5 versus RCP8.5), the models (i.e., differences between each 

individual projection), and the statistical downscaling method (MACA or LOCA). One additional source 

in the choice of extreme value distribution (EVD) was employed for return period precipitation. Our 

method investigates the variance of the data, with some assumptions. Variance, as the square of standard 

deviation, is a measure of how far a set of numbers (in this case, a climate projection) varies from its 

average. Thus, a greater variance implies a larger spread, which may be interpreted as higher uncertainty 

in the central tendency of a projection and/or less agreement between the inputs to that projection. Table 

S2 below describes in-brief the methods used to obtain Fig. 9.  

 

Table S3: Description of methods used to estimate variance contributed by different factors of a climate 

projection.  

Source of uncertainty/spread Method  

Model Variance of the difference between each model from each other 

model. Assessed for all three reference periods and both emissions 

scenarios, but only average of the late-21st century with both 

emissions used. Only MACA model spread (n=15) evaluated.   

Emissions Variance of the difference between the RCP8.5 minus RCP4.5 

projection magnitudes, for the late 21st century only.  

SD technique Variance of the difference between SD techniques (MACA minus 

LOCA), assessed for the three reference periods, but final value just 
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for the average between the two emissions scenarios for the late 21st 

century. 

EVD method Variance of the difference between the 100-year return period 

estimates for daily precipitation (GP minus GEV), obtained for the 

three reference periods and both emissions pathways. Final value is 

average of the late 21st century two emissions pathway values.  

 

Once the variance values had been obtained for each source, the fractional contribution to the total sum of 

the variances was assessed, in order to place all variables on the same scale, and to provide a measure of 

their relative importance in terms of the magnitude of spread. Thus, in Fig. 9, when the fractional variance 

is 0.1 for SD, versus 0.5 for models, as a hypothetical example, this indicates that the magnitude of the 

variance obtained from applying the methods in the table above showed a 5x greater variance between 

models, compared to that produced from the difference between the two SD methods. We focused on the 

future late 21st century values of variance, which for most variables represented the largest variances 

compared to earlier reference periods.  
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