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Abstract: Central Oklahoma is undergoing investment in new intermodal transportation and rehabil-
itation of its infrastructure. Despite a highly variable historical climate, future changes resulting from
anthropogenic climate change may be outside of the range for which infrastructure was designed. We
examined 21st century trends, focusing on weather and climate extremes of demonstrated importance
to transportation professionals as identified through expert input. We assessed trends from a suite of
15 global climate models (GCMs) using two emissions scenarios and two high-resolution statistically
downscaled datasets. This ensemble provided a quantitative range for potential future climate
conditions whilst revealing uncertainties associated with different models and downscaling methods.
Our results support the general consensus of a reduction in the frequency of cold temperatures,
freeze–thaw cycles, and winter weather; however, for the latter, there is not necessarily a reduction in
intensity. Extreme heat days (e.g., days ≥100 ◦F) increased by factors of 3–6, with this upper range
associated with high greenhouse gas emissions, while the seasonal duration of extreme heat extended
by 4–10 weeks. Projected return intervals for heavy rainfall increased in frequency and magnitude in
the mid and late 21st century. Although the contribution of the emissions pathway to these changes
is evident, different extreme value distributions and the varying simulations of precipitation from
the GCMs have a large effect on magnitudes, leading to a range of possible futures to consider in
infrastructure design. Precipitation metrics, particularly at the extremes, were more sensitive to the
selection of downscaled data, as compared with temperature metrics. Our approach represents a
resource for transportation professionals seeking to identify changing risk probabilities at regional to
local scales, as a precursor to planning and adaptation.

Keywords: transportation; climate change; statistical downscaling; regional climatology; United
States; extreme events

1. Introduction

The transportation sector employs weather and climate information in the planning,
design, and maintenance of resources and assets. Extreme weather is associated with
the degradation or destruction of infrastructure and in delays, diversions, or accidents
during transit [1–3]. Recent extreme events, such as excessive heat, severe winter weather,
coastal storm surge, and extreme precipitation, have been implicated in increasing costs
to state Departments of Transportation (DOTs) [4]. Shifts in the frequency and intensity
of extreme events are anticipated in association with anthropogenic climate change [5,6],
and it is increasingly recognized that historical climatological records do not contain good
analogues for future conditions [7,8]. This shift from historically relied-upon “stationarity”
may result in poor performance and reduced lifetimes for infrastructure designed using
historical data.

In response to these stressors, there is a growing body of literature and resources
that contextualize climate change impacts at the regional scale for decision support. A
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variety of approaches have been implemented, from the use of climate assessments to direct
analyses of statistically downscaled climate projections derived from global climate models
(GCMs). For example, vulnerabilities of transportation assets to climate stressors have
been assessed using indicators and thresholds [7–12], and case studies have demonstrated
how infrastructure, safety, or maintenance are sensitive to specific stressors. Despite the
increasing abundance of resources and knowledge nationally, there are comparatively few
transportation and infrastructure analyses that have directly incorporated climate data
across the South Central United States [13,14].

Here, we developed a series of tailored climate projections for central Oklahoma,
including the Oklahoma City (OKC) metropolitan area. Our research did not apply to a
specific management challenge; rather, it provides a quantitative regional-to-local-scale
climate change resource. We posit the following questions: (a) What adverse meteorological
conditions and thresholds are of particular relevance and importance to transportation
in this region; and (b) What are the trends and range of projections associated with these
events of high concern? Due to their particular propensity for disruption, the variables
and thresholds we examined focused on extremes, their selection guided by a survey
disseminated to transportation professionals. We evaluated the range of plausible climate
futures and uncertainties for particular variables through use of multiple GCMs, two
emissions scenarios, and two publicly available statistical downscaling (hereafter, SD)
techniques.

Our region was selected based on its ongoing investments in infrastructure replace-
ment and rehabilitation. Based on the American Society for Civil Engineers (ASCE) ‘score-
card’ [15], OKC was previously ranked high in the number of deficient bridges for a city of
1–2 million people, and on average, urban roads were rated as ‘fair’ for pavement condi-
tion. Despite limitations posed by budget constraints, current and planned infrastructure
projects are hardening, restoring, and replacing key assets (e.g., OK House Bills HB2248 and
2249, 2012), to the extent that the most recent ASCE report [16] notes clear improvement in
bridge and road infrastructure. The state’s long-term transportation plan [17] identified
infrastructure investment needs between 2015 and 2040, including the replacement of over
1800 bridges and 6400 miles of roadway, in addition to resurfacing and the introduction
of light rail transit in downtown Oklahoma City. Many of these investments are, and
will, improve infrastructure throughout the state, but their expected lifetimes of multiple
decades places them under the influence of a changing climate. The proactive incorporation
of climate-related risk is increasingly being recognized by federal and state agencies for
the improved adaptation and mitigation of premature and expensive damage [16,18,19].
Quantitative regional-scale information is needed to assess these risks.

Our assessment identified the potential magnitude, scale, and range of climate impacts
for transportation planners in central Oklahoma using techniques and data applicable to
other regions. We recognize that the practical application of this information requires buy-
in from multiple agents, and its implementation in infrastructure projects is not necessarily
straightforward, partially due to inherent uncertainties in climate projections and the use of
non-standard data. Other studies have highlighted challenges and suggested strategies for
incorporating climate projections [18–22]. Section 2 summarizes expert input to the project,
including our selection of thresholds and variables, and describes climate data acquisition
and analysis. Section 3 details regional climate projections, and Section 4 discusses results
within the context of transportation impacts. We conclude with a summary of the major
findings in Section 5. The Supplementary Materials are available online.

2. Materials and Methods
2.1. Weather and Climate Information Needs Survey

Transportation-relevant weather and climate information was solicited from experts
through an online survey entitled “Weather and Climate Data Needs for Transportation,”
developed using Qualtrics (https://www.qualtrics.com, first accessed on 1 June 2015) [23],
Section 2.1. We refined the survey through testing and feedback from colleagues at the
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South Central Climate Adaptation Science Center, Southern Climate Impacts Planning
Program, and Southern Plains Transportation Center. The latter center released the online
survey from September to December 2015 throughout U.S. DOT Region 6 via their email
list server. In total, 57 respondents started the survey, with 62% completing the survey in
full (38% in part). The relatively small sample size likely results from no prior relationship
between the authors and many agencies solicited. However, those who participated
provided substantive feedback.

The survey first collected basic demographic information. Then, participants ranked
the most hazardous weather conditions from their professional perspective and assigned
thresholds, if known, to hazardous temperature and precipitation conditions. Two ques-
tions asked respondents to rank, in order of perceived importance, various transportation-
relevant weather and climate variables that have significant adverse impacts. Then, partici-
pants ranked the variables and indices they most desired from climate information. Further
queries prompted participants to evaluate their current climate data resources, potential
future needs, and opinions on data usability and reliability (Appendix A, Figures A1–A3).
Respondents included transportation and engineering researchers (46%), construction
engineers (30%), maintenance (26%), and infrastructure experts (22%); as well as other em-
ployees (22% self-identifying as in planning, operations, and urban design). The majority
of completed surveys had respondents from Oklahoma (80%) and Texas (6%). There were
1–2 responses each from Arkansas, Louisiana, and New Mexico.

Total responses changed by variable, with a mean of n = 34 (60% of respondents), sug-
gesting that some respondents skipped a variable that was not applicable or with unknown
impact. The top 10 variables of concern, from highest to lowest, were: (1) heavy rain-
fall/flooding; (2) snowstorms; (3) extreme heat/maximum surface temperature; (4) freeze–
thaw cycles; (5) freezing rain; (6) wind speed/high wind; (7) cold extremes/minimum
surface temperature; (8) thunderstorms; (9) tornado; and (10) heating degree days, shown
in Appendix A, Figure A1. With most respondents from Oklahoma, this ranking reflected
extremes common to the state. Heavy precipitation was particularly salient due to repeated
rounds of excessive rainfall and flooding during 2015 [24]. The survey also identified that
winter events, although comparatively rare in the southern United States, were consistently
among the top concerns.

After establishing key variables, participants used their experience to identify a typical
threshold to distinguish hazardous conditions from normal operations for hot and cold
temperatures (in ◦F) and for rainfall, snow, and ice (in inches or return periods). Many
respondents left this question blank (n~20–24) if they did not know or have an applicable
threshold. The most-cited threshold was 100 ◦F (37.8 ◦C) for hot temperatures and 32 ◦F
(0 ◦C) for cold temperatures (Figure S2). For precipitation, respondents volunteered a
wider range of values (not shown), as expected across a region with a large gradient in
precipitation from southeast to northwest. For freezing rain, results suggested that even a
glaze (between 0.01 and 0.25 inches, or 0.25 to 6.3 mm) is detrimental, with ≥0.25 inches
(6.3 mm)—the current National Weather Service (NWS) criterion for an ice storm—ranking
second. Snowfall thresholds of ≤5 inches (126 mm, per 24 h period) were noted by
nearly 75% of respondents, with a few supplying much higher amounts, e.g., ≥10 inches
(252 mm). For rainfall thresholds, 42% used an hourly rainfall rate, typically ≥1 inch
(25.2 mm) per hour. Thirty percent used daily rainfall or event total, typically 3–8 inches
over 24 h or a single event. Other respondents gave return-period thresholds of 1-in-50-year
and 1-in-100-year events. Our results suggested that precipitation thresholds were highly
contextualized to sub-discipline, location, or application (e.g., highway safety versus culvert
design), consistent with views of non-transportation decision-makers [25]. Subsequently,
multiple precipitation products would be most useful for a range of users.

Although the small sample size precluded statistical assessment, the expert guidance
informed our choice of variables and the types of data products to generate. For this
study, we selected those top-10 variables from the survey that could be derived from
daily temperature and precipitation—standard variables available in gridded observations
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and SD climate projections. Thus, we evaluated heavy precipitation, winter precipitation
(ice/snow), cold and hot extremes, and freeze–thaw cycles.

2.2. Climate Data

We used both historical observations (of at least 30 years duration) and future climate
projections, as detailed in Supplementary Table S1. Climate model data are publicly
available statistically downscaled global climate model (GCM) projections. Statistical
downscaling approaches vary in statistical techniques and complexity [26]; we chose two
‘Constructed Analogue’ (CA) datasets that are widely used by decision makers: Multivariate
Adaptive Constructed Analogues (MACA) [27] and Localized Constructed Analogues
(LOCA) [28]. Both techniques identify local, high-resolution analogues associated with the
coarse-resolution GCM atmospheric patterns, but with variations in the exact methodology.

MACA uses multivariate statistics to construct analogues, preserving the time se-
quences of events and atmospheric patterns simulated by the GCM, while correcting biases
associated with terrain and resolution, thus better capturing the observed magnitudes
of temperature and precipitation. MACA applies 20 GCMs from the Coupled Model
Inter-comparison Project Phase 5 (CMIP5) [29], with 6.6 km horizontal grid spacing and
daily temporal resolution, using Livneh (2013) [30] observations as the training data (i.e.,
MACAv2LIVNEH). Five of the twenty models were excluded based on their poor simu-
lation of past climate in the South Central United States, as per Mullens and McPherson
(2019) [31]. We analyzed data downscaled from the 15 remaining models for two repre-
sentative concentration pathways (RCPs) [32], or future scenarios. RCP4.5 is a ‘mid-range’
future whereby some greenhouse gas emissions abatement is anticipated, and RCP8.5 is a
‘high’ emissions pathway representing a fossil-fuel-intensive world.

The secondary SD dataset was the Localized Constructed Analogues (LOCA) tech-
nique, developed by Pierce et al. [28,33]. LOCA’s downscaling approach also involves
multivariate statistics, identifying regional analogues from gridded observations. LOCA
differs from MACA in that it directly downscales the model-projected climatology change
fields. Additionally, it applies a smaller spatial radius for its analog days and model fields.

Thus, our sampling accounted for a range of future emissions scenarios (RCP 4.5 and
8.5), model variability (15 distinct GCMs), and SD techniques (MACA and LOCA), all of
which contribute to the expected range in the variability of magnitude, timing, and spatial
extent of future climate-related impacts. Finally, to highlight some subsets of plausible
futures (in addition to multi-model averages and ranges), we used the scenario approach
of Mullens and McPherson [31] for the study area, grouping models into specific categories
(‘Hot/Dry’ (HD) and ‘Warm/Wet’ (WW)) that represent a spread of plausible futures. The
Supplementary Materials (Figures S1–S3, Table S2, available online) detail our subsetting
approach.

2.3. Domain and Temporal Range

For most variables, we evaluated three 30-year reference periods: a ‘historical’ period
from 1971 to 2000, a ‘mid-century’ period from 2021 to 2050, and a ‘late-century’ period
from 2061 to 2090. Where timeseries were used, we included the full period 1960–2099. For
the reference periods, more recent climate products use a historical climatology from 1981
to 2010; however, we chose a period that did not conflate the simulation periods in CMIP5,
which ended their historical simulation in 2005. The mid-century period overlaps part
of Oklahoma DOT’s 8-year strategic construction plan [34], and its 2015–2040 long-term
transportation plan [17], spanning the expected lifespan of assets such as roadways and
bridge pavements, railroad tracks, and some equipment. High-value durable infrastructure,
such as culverts, bridges, and buildings, have lifetimes extending into the late-century
period.

We aggregated the gridded data (i.e., gridded observations and downscaled datasets)
into the 13-county Oklahoma Climate Division 5 (CD5 Figure 1) to present representative
results to transportation stakeholders. Climate divisions (CDs) are easily recognizable
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by many decision-makers and reflect regions of similar climate and geography [31,35].
Although the CD-average does not reflect variables at a specific location, our interest was
mesoscale temperature and average precipitation trends over time rather than micro- or
urban-scale effects. Extreme precipitation is also better estimated through sampling from
more grid boxes across each CD (see Section 3) Finally, extreme precipitation return periods
are based on extrapolation of both maximum annual values and the top 5% values annually
over the CD.
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Figure 1. Main panel: Domain (light grey shading), covering Oklahoma Climate Division 5 and
overlain with counties, select cities, and roads. White areas are outside the bounds of the domain.
Map and base layers are courtesy of ArcGIS online. Subsidiary panel shows the location of the
domain within Oklahoma State (image courtesy of the Oklahoma Climatological Survey).

3. Results
3.1. Temperature and Freeze–Thaw Cycles
3.1.1. Freeze–Thaw Cycles

Based on a 1971–2000 average, central Oklahoma experiences approximately 65–70 freeze–
thaw cycles (FTCs) per year, defined as a day with Tmin < 32 ◦F (0 ◦C) and Tmax > 32 ◦F, as
in Hershfield (1974) [36]. Air temperatures are typically measured or simulated 2 m above
ground; therefore, the data precluded us from obtaining a ‘true’ surface measurement.
FTCs are associated with the degradation of road and bridge surfaces, particularly in the
presence of moisture. FTC frequency increases from the southeast to northwest across OK
CD5 [23]. In the past 70 years, annual FTCs have ranged from 45 to 90 days (Supplementary
Figure S4). ‘Enhanced freeze–thaw cycles’ (EFTCs), defined by Haley (2011) [37] as daily
Tmin < 23 ◦F (−5 ◦C) and Tmax > 41 ◦F (5 ◦C), range from 4 to 25 days, or about one in
every five FTCs. Since the late 1940s, there has been a decrease in FTC and EFTC days,
particularly the former, averaging a decline of 1 day per decade, a trend that stabilized after
the 1980s (see online Supplementary Materials).

Figure 2 shows future projections of monthly FTCs over October–March for RCP4.5
(Figure 2a) and RCP8.5 (Figure 2b), with annual multi-model mean totals below each bar



Climate 2023, 11, 32 6 of 24

plot. Monthly and annual averages of FTCs and EFTCs decrease throughout the 21st
century; however, natural variability continues to affect interannual magnitudes. By mid-
century, the multi-model and multi-SD annual averages will decrease by approximately 20%
(model range 7–28%), and are similar in magnitude regardless of the emissions pathway. In
contrast, the magnitude of late 21st century changes strongly depends on the emissions
pathway. FTCs in the RCP4.5 scenario decrease from 9% and 40% annually with a mean
of 28%, while RCP8.5 shows a multi-model mean decrease of nearly 50% annually, with
a range of 23–60%. Monthly projections depicted in Figure 2 suggest that the largest
FTC decreases occur in early winter and early spring (e.g., November–December, March–
April), with the smallest change during peak winter months when temperatures remain
cool enough to permit night-time freezing. Incorporating the climate subsets indicates
no systematic distinction between the hot-dry (HD) and warm-wet (WW) subsets of the
models, except during November–February, when the HD models produce fewer FTC
days, resulting from a greater magnitude of warming in that subset. WW models are more
mixed, showing no particular tendency. We speculate that while the more moderate degree
of warming in those models may favor less reduction in FTC events, a wetter future climate
is potentially cloudier, thus reducing the number of night freezes. These compensating
mechanisms will act differently, depending on the seasonal timing of cold weather, and
their representation in GCMs.
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Figure 2. Bar plot (top) displays the historical observed (asterisk for Livneh, box and triangle for
TopoWx, and gray bar for model ensemble average; 1971–2000) and projected monthly (November–
April) total freeze–thaw cycles for (a) RCP4.5 and (b) RCP8.5. Mean values from each MACA (dots)
and LOCA (squares) projection are shown, with different shading for HD and WW models. Bottom
schematics represent the annual multi-model means for (a,b) above, with FTC (left) and EFTC (right)
for the three reference periods and their respective scenarios with the total sample spread (low, high)
in parenthesis.

3.1.2. Annual Highest and Lowest Temperatures

Figure 3 displays a time series (1960–2099) of the highest daily high temperature and
the lowest daily low temperature in each year (a measure of peak annual temperature range).
The spread of these values in the SD projections corresponds to the interannual variability
of the observations, implying that models represent the magnitude range well. Livneh and
MACA both have median historical annual ranges of 55.8 ◦C, while LOCA’s range is larger
at 57.3 ◦C. The June–August and December–February means increase by 5–10 ◦C by 2100.
LOCA projections show a cold bias in peak minimum temperatures throughout the time
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series, particularly during the historical period, which helps to explain its larger annual
range, whereas MACA projections produce higher maximum temperatures, especially
mid to late 21st century. Minimum temperatures below −17 ◦C (0 ◦F) at the end of the
century are still simulated in RCP4.5 (Figure 3a) but are exceptionally rare in RCP8.5
(Figure 3b). The annual maximum air temperature averages are near 40 ◦C (105 ◦F) in
central Oklahoma for 1971–2000, 43–44 ◦C by the mid-21st century, but with a spread of
projections which implies the increased frequency of very high temperatures (>43.3 ◦C,
110 ◦F). By late century, with RCP8.5, the peak annual maximum rises to 47 ◦C (~115 ◦F),
with some potential for temperatures over 50 ◦C. The magnitude of annual temperature
variation reflects the historical period for both SD methods, with little difference in their
distributions. For example, the mid- and late 21st century median ranges under the RCP8.5
pathway for MACA were 57 ◦C and 56.8 ◦C, respectively, and for LOCA 57.2 ◦C and 57.6 ◦C,
while measures of distribution such as skewness and kurtosis yielded generally similar
results, with evidence of a slight positive skew, and a kurtosis that increased for both SD
methods during the mid-21st century but retracted back to near-historical levels in the
late 21st century (this was true of both emissions pathways). This indicates that the entire
distribution by the late 21st century is simply shifted to higher maximum and minimum
temperatures without notable sustained changes in its shape. Finally, the smoothed average
(using Friedman’s super-smoothing R function [38]) of each time series of WW and HD
subsets of projections indicates that HD (WW) models generally show a faster (slower)
rise in hot and cold temperatures over time. Using an example of maximum temperatures
under RCP8.5, HD is recorded as +7.8 ◦C/140 years versus +6.3 ◦C/140 years for WW
(based on differences in the mean of the first and last decades of the record), compared with
7.6 ◦C/140 years for the total multi-model average. While cool temperatures under both
emissions pathways scale similarly to the above, with HD subsets showing the greatest
warming trend, this is not the case for the RCP4.5 high temperature results, which yield
little differences in these subsets and the multi-model average.

3.1.3. Extreme Heat

The Oklahoma City metropolitan area experiences an average of 10 days per year
with temperatures ≥37.8 ◦C (100 ◦F) (Oklahoma Mesonet [39], 1981–2010), defined here
as ‘extreme heat days.’ Historically, the hottest in situ air temperature in the city was
45◦C (113 ◦F), recorded in both 1936 and 2012 [40]. Summer 2011 produced the greatest
number of extreme heat days in recorded history (65 at the east Oklahoma City Mesonet
station). Figure 4 displays projections of the annual number of extreme heat days, including
decadal averages and the 5th–95th percentile range of annual frequencies of such days.
Figure 5 shows the projected seasonal extent of extreme heat days (i.e., range of the first
and last occurrence of an extreme heat day, abbreviated as ‘100 ◦F season’) over the three
reference periods. For comparison, both figures include the duration of central Oklahoma’s
exceptional and damaging 2011 heatwave. Figure 5 also compares the projections to the
climatological (1981–2010) duration of the 100 ◦F season for Phoenix, AZ [41]. Results
from all projections indicate that the annual total number of extreme heat days is expected
to increase through the 21st century. In fact, their number could double by 2030. After
2040, the emissions pathway strongly affects the projected trend. Years with frequent heat
extremes similar to or exceeding those of 2011 are projected to occur annually by 2090 under
RCP8.5 (Figure 5b) and once every 20 years, on average, by 2050 under RCP4.5. Although
the two downscaling datasets show slightly different values by model, the differences in
number of extreme heat days are small compared with inter-model variability. The HD
subset is associated with a higher average frequency of extreme heat days than WW for
RCP8.5 and RCP4.5 by late century, but mid-century projections show little difference
between HD and WW.



Climate 2023, 11, 32 8 of 24
Climate 2023, 11, x FOR PEER REVIEW 8 of 25 
 

 

 

Figure 3. Time series (left) of historical and future climate model projections (1960–2099) in highest 

daily maximum, (June–August) and lowest daily minimum temperatures (December–February) in 

°C. Panel (a) is RCP4.5; panel (c) is RCP8.5. Lines depict the multi-model mean (black line) and the 

shaded polygons indicated the maximum–minimum temperature range across the full ensemble of 

projections, for MACA projections only (shaded + stippling), and for LOCA projections only 

(shaded). Time series for HD and WW model average values are smoothed using the ‘supsmu’ func-

tion in R. Observations (Livneh) is the thick purple line. On the right are probability density distri-

butions of annual temperature ranges during 1971–2000 (top), 2021–2050 (middle) and 2061–2090 

(bottom) for (b) RCP4.5 and (d) RCP8.5. Livneh, MACA and LOCA line legend is shown in the top 

panel of (b). 

3.1.3. Extreme Heat 

The Oklahoma City metropolitan area experiences an average of 10 days per year 

with temperatures ≥37.8 °C (100 °F) (Oklahoma Mesonet [39], 1981–2010), defined here as 

‘extreme heat days.’ Historically, the hottest in situ air temperature in the city was 45°C 

(113 °F), recorded in both 1936 and 2012 [40]. Summer 2011 produced the greatest number 

of extreme heat days in recorded history (65 at the east Oklahoma City Mesonet station). 

Figure 4 displays projections of the annual number of extreme heat days, including deca-

dal averages and the 5th–95th percentile range of annual frequencies of such days. Figure 
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Figure 3. Time series (left) of historical and future climate model projections (1960–2099) in highest
daily maximum, (June–August) and lowest daily minimum temperatures (December–February) in
◦C. Panel (a) is RCP4.5; panel (c) is RCP8.5. Lines depict the multi-model mean (black line) and the
shaded polygons indicated the maximum–minimum temperature range across the full ensemble of
projections, for MACA projections only (shaded + stippling), and for LOCA projections only (shaded).
Time series for HD and WW model average values are smoothed using the ‘supsmu’ function in R.
Observations (Livneh) is the thick purple line. On the right are probability density distributions of
annual temperature ranges during 1971–2000 (top), 2021–2050 (middle) and 2061–2090 (bottom) for
(b) RCP4.5 and (d) RCP8.5. Livneh, MACA and LOCA line legend is shown in the top panel of (b).
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Figure 4. Bar plot of decadal multi-model average climate model projections of the number of extreme
heat (100 ◦F) days for (a) RCP4.5 and (b) RCP8.5. Different shading denotes observations, and the
three reference periods. Range bars (thin vertical lines) depict the 5th–95th percentile of the spread
of frequencies from each model/observation. Each marker denotes specific model projections for
MACA (right, circles) and LOCA (left, squares) with HD and WW models shaded separately. The
text values above each sub-panel show the multi-model mean number of extreme heat days for both
SD methods, and the horizontal black line denotes the number of days observed in Oklahoma City
during the 2011 heatwave and drought.

The 100 ◦F season lengthens through mid- and late-century, but the duration is sub-
stantially increased under RCP8.5 (Figure 5). Historically, extreme heat days are most
common between mid-July and late August [40], and the historical SD projection agree
with this observation (Figure 5a,d). Under RCP4.5 or by mid-century, the 100 ◦F season
lasts from late June to early September; under RCP8.5, it lasts from late May to the end of
September by late-century (Figure 5d), analogous to today’s climate of Phoenix, AZ. Earlier
spring onset dominates the season lengthening. Again, differences between the two SD
methods are apparent (Figure 5, right), but not particularly notable for most models and
RCPs. Differences between HD and WW subsets (Figure 5b,c,e) relate to their temperature
characteristics, with some of the largest increases in extreme heat season length in the HD
subsets as greater increases in average temperatures increase the likelihood of more hot
days and longer seasonal durations. This is further confirmed by displaying models in
order of increasing mean temperature change (Figure 5b,c,e). We find high correlation
between that metric and the 100 ◦F season for both emissions pathways (Pearson corre-
lations ~0.85–0.90, not shown). Hotter temperatures in the region have historically been
linked with more frequent or more intense drought conditions [42], due in part to enhanced
soil moisture depletion through evapotranspiration [43,44] and changes in atmospheric
circulation that favor warm season drying [45].
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Figure 5. Horizontal bar plot of CD5’s100 ◦F season for historical simulations (bottom bar plot in
(a,d)) and future climate model projections (a) RCP4.5 and (d) RCP8.5. For (a,d), the y-axis is the
30-year period ending in the year shown. The red bar spans the multi-model average onset and end,
with dates shown in text (month-day). The pink areas depict the model spread as the 5th percentile
(onset date) and 95th percentile (end date). The shaded vertical box denotes the duration of the 2011
100 ◦F season for CD5, and the dashed-dot lines represent the average duration of the 100 ◦F season
for present-day Phoenix, AZ, USA. The right panels show (b) the length of the 100 ◦F season (in
days) for all models and SD datasets during the historical period, and the late 21st century for both
(c) RCP4.5 and (e) RCP8.5. Green (red) boxes highlight the WW and HD models, respectively. Models
are ordered by the magnitude of their average temperature increase between historical and late 21st
century reference periods from smallest (top), to greatest change (bottom).

3.2. Winter Weather and Extreme Precipitation
3.2.1. Snow and Ice

Snow and ice (freezing rain and sleet) can be difficult to measure, and long-term
records of precipitation type are typically restricted to ‘first-order’ National Weather Ser-
vice stations situated in major cities [46]. For SD data, the temporal resolution and available
surface variables prohibit distinguishing specific water phase types (e.g., snow, freezing
rain) highlighted by survey respondents. Instead, we defined a proxy: winter precipitation
of any phase occurs on a given day when daily Tmax ≤ 32 ◦F (0 ◦C) and precipitation
>0.01 inch (0.25 mm). We estimated the frequency of winter weather occurrence using day
counts from accumulated liquid water equivalent, hereafter LWE. This metric only approxi-
mates accumulation; a higher LWE implies more precipitation, although LWE cannot be
equated with high confidence to an amount of ice accretion or snow accumulation [46].
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Furthermore, daily temporal resolution likely results in an underestimate of LWE when
maximum daily temperatures rise slightly above freezing.

Historically, central Oklahoma has, on average, four snow or ice days per year ac-
cording to this proxy method, but with high interannual variability. Based on a study of
precipitation phase types from Mullens and McPherson [42,46] using alternate data, there
are approximately 0.75 ice days for every snow day. Snowfall dominates further north
and west in the U.S. Southern Plains, whereas ice is proportionately the dominant phase
type from southern Oklahoma into north and central Texas. Figure 6 shows projections
under RCP4.5 (Figure 6a) and RCP8.5 (Figure 6c) for winter precipitation frequency as a
time series normalized by the historical climatological frequency (1971–2000) as well as
the projected change in intensity (amount per event)—accumulated LWE divided by event
frequency—for select decadal periods (Figure 6b,d).
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Figure 6. Historical and future climate model projections in winter precipitation (ice/snow) days and
intensity. Panels (a,c) are time series of the standardized winter precipitation (ice/snow) frequency
(days) for RCP4.5, and RCP8.5, respectively, while panels (b,d) depict decadal mean changes winter
precipitation intensity for RCP4.5 and RCP8.5, respectively, defined as total accumulated winter
precipitation divided by the number of events. For (a,c), the thin black line is the multi-model mean,
and the solid (stippled) shading is the 5th to 95th percentile range from all MACA (LOCA) models.
Observed (Livneh) data are the thick dashed line, and the 5th–95th percentile values of the observed
data (1971–2000) are shown by the horizontal thin dashed black lines. For panels (b,d), the range bars
depict the 5th–95th percentile range from all models. Observations are overlaid for the historical
period. HD and WW scenarios are shown in all plots by the solid and dashed lines, respectively.

Winter precipitation days for central Oklahoma are projected to decrease in frequency
by approximately 30% (~1 day) by mid-century (Figure 6a,c) under both RCPs. Under
RCP8.5 (RCP4.5) this frequency is expected to decrease by 80% (50%), or 3 (2) days, by
the 2090s. Nonetheless, considerable year-to-year variability remains, and the projections’
spread infers the potential for years with above-normal winter weather frequency through
2050. Similarly, the projected intensity indicates that the average precipitation amount
by event had no discernable change throughout the 21st century (Figure 6b,d). Thus, by
late-century, snow and ice events across central Oklahoma under RCP8.5 are expected
to be similar to the present-day frequency for north-central Texas (e.g., between Dallas
and Austin)—i.e., approximately 1–2 ice or snow days per year. Based on historical phase
climatology, this implies roughly two freezing precipitation (ice, sleet) events for every
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snowfall event [42]. Super-smoothed average HD and WW model projections show that
winter precipitation reduces in frequency for HD by the mid-late century to a greater
degree in RCP4.5 than RCP8.5. Under RCP8.5, there is little difference between HD and
WW by late-century, and the subsets largely mirror the magnitude of the full ensemble.
Furthermore, HD and WW subsets are indistinguishable for projected changes in intensity
(Figure 6b,d).

3.2.2. Heavy Precipitation

Extreme precipitation events have been particularly salient hazards for Oklahoma
in recent years. During 2010–2021, Oklahoma City had at least four precipitation days
of ≥5 inches accumulation in 24 h, often resulting in urban flooding and loss of life.
During 2015, excessive rainfall in May, June, and December produced repeated episodes
of damaging floods throughout the state [42]. Studies have noted observed increases
in the frequency of heavy precipitation for various regions of the United States [47–49].
Here, we assessed projected changes to extreme precipitation in central Oklahoma by
calculating return periods of daily-accumulated rainfall over durations of 5–100 years,
based on annual maxima and peaks-over-threshold (POT) sampling for extreme events
over the three reference periods, using the methods of Mullens and McPherson [31]. Sub-
daily intensity is a valued metric in hydrologic engineering; however, the daily resolution
of the SD data did not permit investigations of sub-daily rain-rates.

The calculation of return-period frequency requires fitting an extreme value distri-
bution (EVD) to the precipitation samples. EVD selection is non-trivial because different
distributions produce different estimates, particularly at longer return intervals (>50 years)
and when extrapolation is needed beyond the temporal range of the data. The Gumbel
method [50], for example, can underestimate return magnitudes due to a shape parameter
of zero, thereby reducing the weight of the extreme tails of the distribution [6]. In contrast,
both the generalized extreme value (GEV) for annual maxima and generalized pareto (GP)
for POT (here, the top 5% of daily precipitation) incorporate a shape parameter and focus
on fitting the most ‘extreme’ extremes. Accurate estimates of extremely heavy precipitation
are desirable, so long as the values are physically realistic. In the case of future projections,
Mullens and McPherson [31] noted that magnitudes for MACA-derived return periods
approached or even exceeded current probable maximum precipitation values in some
locations, especially near the coastline. Although these issues were less apparent inland,
outliers in our results should be interpreted with caution, as some models in combination
with the SD approach produced aggressive increases in extreme precipitation magnitude
that require further evaluation.

We examined both the GP and GEV distributions using the R package ‘ExtRemes’.
As in Mullens and McPherson [31], both methods employed L-moments to model the
distribution tail. Return periods for daily precipitation are shown for 5-, 10-, 20-, 50-, and
100-year intervals. Figure 7 shows the future change (average and 5th to 95th percentile
spread) in the return period frequency in years, as an expression of how often a historical
event of a certain return frequency could occur in the future. Figure 8 shows changes in the
magnitude of future return-period accumulations compared with their historical values,
based on all downscaled projections and the two EVDs. Generally, the Livneh observations
(not shown) and SD multi-model average magnitudes for the 1-day return intervals scale
similarly (within 1 inch) to those estimated from NOAA-Atlas 14 [51], with the largest
discrepancy corresponding to the multi-model average of the LOCA projections, which
underestimates magnitudes at the higher return periods (20–100 years, bottom of Figure 8).
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Figure 7. Changes in the frequency of precipitation extremes at various return intervals. Panels
(a,b) show results using GEV with annual maxima; panels (c,d) use GP with POT (top 5%). Shaded
bars depict the 5th–95th percentile range in the projections, and the average by the vertical bar within
each box. Values for individual projections include MACA (dots) and LOCA (squares), with HD and
WW subsets shaded differently from the full ensemble. Return intervals were calculated over a range
between 2 and 100 years. Values outside of this range were not estimated; therefore, any intervals
that would have fallen outside of this range in the future period are not available.

Mid- and late-century projections from most downscaled GCMs show increases in the
frequency of historically extreme precipitation, particularly under RCP8.5 (Figure 7a,b).
LOCA and MACA differ in their representation of these extremes, where the sign of the
change signal was sometimes opposite when downscaled by the same CMIP5 model,
presumably based on how the SD method represents extreme precipitation. LOCA tends
to produce a smaller change signal, and thus, less change in return period events (albeit
still generally shorter in the future compared with the historical period). LOCA shows
inconsistency in the direction of change in projections of extremes, which was noted in
a recent study of the northeast United States by Wang et al. (2020) [52]. Supplementary
Figure S5c identifies that the future LOCA distribution of the annual maxima has a shorter
tail (hence, lower magnitude of extremes) compared with MACA. In contrast, MACA
aggressively increases event frequencies, and the direction of change is consistent. However,
the inter-model spread increases with larger return periods, as the EVD’s uncertainty grows
with increased extrapolation. The GP’s spread is particularly large—possibly resulting
from a larger sample (top 5% each year) of heavy precipitation events versus the climate-
division annual maxima (one value per year). GP also shows several (not a majority)
LOCA projections producing negative (i.e., lower intensity/frequency) future changes.
Additionally, the variations in projections at this highly regional scale are more substantial
than when data are aggregated over larger regions (e.g., compared with Mullens and
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McPherson [31]) because a heavier weight is placed on location-specific simulated extreme
events.
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Figure 8. As Figure 7, although here showing the change in return-period magnitudes (inches). The
calculated historical return-period amounts (inches) for daily precipitation (table at bottom) show
results for the two different EVDs and the NOAA-14 Atlas (observation/historical dataset).

Figure 8 mirrors these trends, showing the magnitudes of change between historical
and future periods at various return intervals. RCP4.5 scenarios generally demonstrate
lower average magnitude and frequency changes and less difference between the mid-
and late-centuries, whereas RCP8.5 projections show increases in both future periods.
The dominant effect on magnitude and frequency, however, appears to result from GCM
differences (i.e., their physical representation of hydrologic processes), with substantial
contributions from the selection of SD method or use of EVD, especially at the longest
return intervals. When considering multi-projection averages from this sample, a historical
10-year rainfall event could occur 1.25–2.5 times more often in the mid-to-late-century,
with the 50- and 100-year rainfall events projected to occur 2–5 times and 2–7 times more
often, respectively. For average magnitudes, the 10-, 50, and 100-year return intervals
increased by 0.9-2.8 inches (22.7–70.6 mm), 1.5–4.8 inches (37.8–121 mm), and 1.8–6.2 inches
(45.4–156.2 mm), respectively, across all scenarios and future time periods. HD versus WW
subsets show no preference for higher or lower values and no distinct differences from
each other; they both occupy the middle to higher frequency and magnitude ranges. This
result generally supports the view that changes in the magnitude of a model’s average
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temperature and precipitation in combination, or separately, are poorly related to changes
in precipitation extremes [31]. In fact, there is no correlation (Pearson) between changes
in magnitude of 100-year events and changes in average precipitation in late-century (not
shown).

In aggregate, the magnitude and frequency of extreme precipitation events relative to
the historical period increase substantially by mid-century. In other words, precipitation
extremes are already under the influence of anthropogenic climate change. This assertion
is further strengthened by observational evidence of recent, sustained increases in such
extremes, posing an exacerbated hazard to transportation with time. Unfortunately, trans-
portation design decisions become particularly challenging when considering model, SD,
and EVD spread (Figures 7 and 8) and associated uncertainty [7,21], continual updates
of observational and model data, and the range of dataset choices. However, ensemble
averages at least can provide more clarity on central tendencies. Based on these findings, a
single or small subset of climate projections is not adequate to capture the range of plausible
future extremes, leading to possible under- or over-design if used in planning [53].

4. Discussion
4.1. Contributions to Projection Spread

Throughout this analysis, we provide a general depiction of global climate model
(GCM), downscaling method, and RCP scenario spread based on the choice of these three
major contributors to resulting climate information. Here, we briefly summarize their
relative contributions to the climate projections by estimating their associated variances
as independently as possible (see the Supplementary Materials for a brief description of
the approach). Figure 9 displays our findings. For this model, emissions and SD sample,
the choice of GCM contributes most to the variance; thus, model selection is important.
Too few GCMs or too many GCMs within the same model “family” may diminish the
representativeness of the full range of future climates. Moreover, the use of climate subsets
(“Hot/Dry”, “Warm/Wet”) in this study did not reflect a full range of future climates, so
that technique for sub-setting data is not necessarily applicable to every region and variable
and should be employed strategically. Temperature variables, particularly for heat, tended
to show the least sensitivity to the downscaling data choices used in our analysis; thus, it
may be acceptable to use one SD approach (MACA or LOCA) for this particular region
and purpose. Nonetheless, caveats exist—including how SD methods deal with temporally
sequenced events such as heatwaves. All variables are also bound by the ‘stationarity
assumption’ that Dixon et al. (2016) [54] have identified as having distinct spatial variation
in its applicability, with limits particularly in complex terrain and coastlines.

We provide further evidence that magnitudes for extreme precipitation are distinctly
influenced by the SD approach, as well as the EVD methods for extracting return periods,
consistent with Mullens and McPherson [31], and reflected in other studies [52,55]. Wang
et al. (2020) [52] also compared MACA and LOCA, finding greater differences between
them for extremes than averages, with lower values of future relative change in LOCA, and
especially so with the increasing ‘rareness’ of the extreme. They note that while there may
be some contribution from training data, in instances where MACA and LOCA use the
same training data (as in our study), method differences will dominate. For example, the
temporal window over which relative precipitation changes are scaled (monthly in MACA,
annually in LOCA) could affect the subsequent magnitudes. This finding highlights the
necessity to carefully select GCMs and SD techniques when analyzing extreme precipitation,
and to, when possible, leverage multiple options. Additional evidence is supplied through
Supplementary Figure S5, which highlights some differences and similarities between
LOCA and MACA distributions of many of the variables evaluated here



Climate 2023, 11, 32 16 of 24

Climate 2023, 11, x FOR PEER REVIEW 16 of 25 
 

 

temporally sequenced events such as heatwaves. All variables are also bound by the ‘sta-

tionarity assumption’ that Dixon et al. (2016) [54] have identified as having distinct spatial 

variation in its applicability, with limits particularly in complex terrain and coastlines. 

 

Figure 9. Contributions of various aspects of a climate projection to total variance of each metric 

shown in (a–g). Model variance is the variance between model projections by the late 21st century 

using both RCP4.5 and RCP8.5, based on the MACA SD method only; emissions variance is the 

variance of the difference between late 21st century projections from RCP4.5 and RCP8.5; SD vari-

ance is the variance of the differences between MACA and LOCA simulations for all overlapping 

models. Lastly, extreme value distribution (EVD) variance is the difference between the 100-year 

return period magnitudes of daily precipitation (GP minus GEV) obtained for both future reference 

periods, and emissions scenarios. The plots show the fractional contributions of each variance type, 

with more details of this approach given in Supplementary Materials, Table S3. 

We provide further evidence that magnitudes for extreme precipitation are distinctly 

influenced by the SD approach, as well as the EVD methods for extracting return periods, 

consistent with Mullens and McPherson [31], and reflected in other studies [52,55]. Wang 

et al. (2020) [52] also compared MACA and LOCA, finding greater differences between 

them for extremes than averages, with lower values of future relative change in LOCA, 

and especially so with the increasing ‘rareness’ of the extreme. They note that while there 

may be some contribution from training data, in instances where MACA and LOCA use 

the same training data (as in our study), method differences will dominate. For example, 

the temporal window over which relative precipitation changes are scaled (monthly in 

MACA, annually in LOCA) could affect the subsequent magnitudes. This finding high-

lights the necessity to carefully select GCMs and SD techniques when analyzing extreme 

precipitation, and to, when possible, leverage multiple options. Additional evidence is 

supplied through Supplementary Figure S5, which highlights some differences and simi-
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Figure 9. Contributions of various aspects of a climate projection to total variance of each metric
shown in (a–g). Model variance is the variance between model projections by the late 21st century
using both RCP4.5 and RCP8.5, based on the MACA SD method only; emissions variance is the
variance of the difference between late 21st century projections from RCP4.5 and RCP8.5; SD variance
is the variance of the differences between MACA and LOCA simulations for all overlapping models.
Lastly, extreme value distribution (EVD) variance is the difference between the 100-year return period
magnitudes of daily precipitation (GP minus GEV) obtained for both future reference periods, and
emissions scenarios. The plots show the fractional contributions of each variance type, with more
details of this approach given in Supplementary Materials, Table S3.

4.2. Transportation Implications

To summarize our results in a transportation-relevant context, we employed the
‘Sensitivity Matrix’ tool, developed from Rowan et al. [9], made available through the
Federal Highway Administration. It qualitatively assesses the impacts of weather and
climate ‘stressors’ on key types of transportation systems, infrastructure, and processes
(‘assets’). We link projected trends in climate variables to transportation assets to create
a sensitivity matrix, as shown in Figure 10. We assume that the future time periods are
aligned well with the design life of the listed assets and that the asset is ostensibly new
in the present time. For safety and maintenance operations, where decisions occur in the
shorter term, we used the mid-century projection, which is similar between RCP4.5 and 8.5
for this region. For infrastructure with expected lifespans ≥50 years, we applied RCP8.5
end-of-century projections. We also assume that design paradigms and practices remain
similar in the future as in the present, and assets have limited or no redundancy for climate-
related impacts beyond their present-day expected frequency. ‘Confidence’ is based on the
rubric of Mullens and McPherson [42]. This assessment is qualitative and only incorporates
exposure as a risk measure, oversimplifying the role of climate-related stressors. Multiple
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alleviating or exacerbating stressors, such as asset age, construction quality, and traffic use,
make climate-related vulnerability difficult to quantify independently and thoroughly [14].
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Figure 10. ‘Sensitivity Matrix’ for central Oklahoma, based on Rowan et al. [9] and available as
a template through the resiliency toolkit of the U.S. Federal Highway Administration. The left
column lists infrastructure assets and the shaded boxes denote the relative magnitude and direction
of projected change associated with the climate criteria described in Section 4.2. Impact is therefore
only a function of potential exposure to climate hazards. Diagonal hatching indicates unknown
or negligible impacts. Confidence (top row) is based on the general framework from Mullens and
McPherson [42] and is based on the availability of research and agreement among findings.

Some transportation assets could benefit from the reduction in cold season hazards.
Fewer freeze-thaw cycles, cold extremes, and winter precipitation may reduce degradation
to paved road and bridge surfaces, decreasing maintenance costs [56]. High annual vari-
ability in cold weather conditions, as evident in Figures 3 and 6, means that these benefits
are not universally true of all future years, one prescient example being that of February
2021, in which record-duration low temperatures were recorded in parts of Oklahoma
and Texas [57]. Our greatest confidence exists with the projected trend in extreme heat
(Figures 3–5) and its impact on infrastructure, including increased risk of railroad track
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buckling, pavement buckling and rutting, and insufficient asphalt binders in some loca-
tions, particularly under load. As an example, Oklahoma currently uses binders ranging
from PG64-22 to PG76-28. While some economic benefit is possible from reducing the
low-temperature rating, projections indicate that binders with a hot temperature rating
of less than 70 eventually will become unsuitable for the local climate (based on ratings
for Phoenix, AZ, USA) [58]. Mallick et al. (2014) [59] estimated that expected pavement
lifetimes could reduce by up to a factor of four nationally when incorporating climate
change projections, especially increasing heat, and long-term increases in maintenance
costs. Heat-related health hazards also contribute to adverse impacts on maintenance
activities and scheduling. Heat extremes are anticipated to increase most substantially
in the later 21st century, if emissions are not abated. In fact, based on our results, a road
surfaced today could experience approximately double the number of days ≥100 ◦F (as
compared with recent decades) by the end of its expected lifespan.

Ice and snow hazards to infrastructure are largely associated with coincident issues
such as freeze–thaw cycles, cold temperatures, and the quantity and frequency of deicer
use. Snow and ice days show decreases of up to 50–80% by late-century. Shorter-term
activities (e.g., maintenance, safety, supply needs) may not experience much change in
the near-term. Longer-term, moderate benefits to infrastructure, safety, and movement of
transportation are expected, including economic benefit from fewer delays and less treating
and removals of snow/ice. Nonetheless, projections for winter precipitation amounts
indicate the continued potential for severe winter events, despite their lower frequency.
Thus, transportation departments may not be as well-equipped or trained for these events
when they do occur, an assertion that was explored by Bolinger et al. [57] in their discussion
of the 2021 extreme winter weather in the U.S. Southern Plains.

Precipitation extremes, either extremely heavy rainfall or an extended lack of rainfall,
are expected to increase. Increased heat coupled with similar or lower average precipitation,
as demonstrated by Mullens and McPherson [31], can lead to more frequent or intense
drought onset or persistence. Drought is primarily a concern for surface infrastructure in
regions of expansive soils, including heavy clay soils in central Oklahoma, by promoting
pavement and foundation damage when drought alternates with heavy rain (e.g., ‘shrink
and swell’) [60]. Drought can also exacerbate blowing dust, a safety hazard across all modes
of transportation [61].

We demonstrated an increasing trend in extreme rainfall for central Oklahoma, with
the potential for a substantial change in return-period frequencies and magnitude by mid-
century, regardless of emissions pathway. Our confidence in the precise magnitudes of
change is low because values vary substantially across projections and EVDs. Nonetheless,
the levels projected are potentially beyond the current redundancy of existing infrastruc-
ture. Infrastructure such as roadways, culverts/drainage, and bridges are sensitive to
precipitation extremes, contributing to road and bridge scour, transportation disruption,
and other damage [56].

5. Summary

This study details changes in transportation-relevant weather and climate variables
for central Oklahoma using a large suite of statistically downscaled climate projections.
Key variables and metrics were ascertained through expert input. The results are consistent
with prior climate-science analyses (e.g., USGCRP 2018 [6], American Association of State
Highway and Transportation Officials, FHWA, and DOT) regarding the direction of the
trends in key variables; however, we provided specific regional quantitative information
and assessment of uncertainties that are not found in the aforementioned resources.

This paper complements a growing body of research that focuses on identifying, plan-
ning, and adapting transportation systems to climate hazards [62]. As demonstrated by this
study, the potential impacts of climate change are beneficial in some cases, but distinctly
detrimental in others, and may necessitate the re-design, hardening, or paradigm shifts in
aspects of transportation planning [22]. This research was regionally focused, and was lim-
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ited by the lack of consistent collaboration between transportation and climate experts. Our
stakeholder survey identified that while climate information is desired for many decisions,
use of climate data outside of the community’s standard practice may be impractical and
too resource-intensive (e.g., Appendix A, Figure A3). Ultimately, successful adaptations to
the complexities of climate change will require increased communication and coproduction
of information between the transportation and climate science communities [20,23].

Our study is part of a broader initiative to apply regional future climate projections
across the South Central United States. State-by-state reports that detail transportation-
relevant climate projections are available from the South Central Climate Adaptation
Science Center (https://climateprojections.wixsite.com/transportation, date accessed on
1 July 2017). Transportation planners can use these reports as a scientific basis for un-
derstanding their regional’s changing climate and inform discussion over resilience and
vulnerability in the South Central United States, as well as applying the techniques used
here to examine climate change in the context of their planning needs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cli11020032/s1, Table S1: Climate data used in this study; Figure
S1: MACA and LOCA climate scenario development; Table S2: Models in the hot-dry (HD) and warm-
wet (WW) categories; Figure S2: Spatial temperature and precipitation changes 2061–2090 minus
1971–2000 using MACA; Figure S5: Same as Figure S3 but using LOCA; Figure S4: Historical freeze–
thaw cycles derived from various datasets; Figure S6: Historical and late 21st century distributions of
key variables from LOCA and MACA projections; Table S3: Description of methods used to estimate
variance contributed by different factors of a climate projection [63].
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Appendix A

Weather and Climate Information Needs Survey

The detailed description of the survey and its findings can be found in Section 2.1 of
McPherson and Mullens (2017), available at: http://www.sptc.org/projects (assecced on 4
January 2023) under SPTC14.1-50.
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