Next Article in Journal
Polygonum multiflorum Extract Exerts Antioxidative Effects and Increases Life Span and Stress Resistance in the Model Organism Caenorhabditis elegans via DAF-16 and SIR-2.1
Previous Article in Journal
Inheritance and Genetic Mapping of the Reduced Height (Rht18) Gene in Wheat
Article Menu
Issue 3 (September) cover image

Export Article

Open AccessArticle
Plants 2018, 7(3), 59; https://doi.org/10.3390/plants7030059

Seasonal Growth of Zygophyllum dumosum Boiss.: Summer Dormancy Is Associated with Loss of the Permissive Epigenetic Marker Dimethyl H3K4 and Extensive Reduction in Proteins Involved in Basic Cell Functions

French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
These authors contributed equal to this work.
*
Author to whom correspondence should be addressed.
Received: 3 June 2018 / Revised: 22 June 2018 / Accepted: 4 July 2018 / Published: 15 July 2018
Full-Text   |   PDF [1568 KB, uploaded 15 July 2018]   |  

Abstract

Plants thriving in desert environments are suitable for studying mechanisms for plant survival under extreme seasonal climate variation. We studied epigenetic mechanisms underlying seasonal growth cycles in the desert plant Zygophyllum dumosum Boiss., which was previously shown to be deficient in repressive markers of di-methyl and tri-methyl H3K9 and their association with factors regulating basic cell functions. We showed a contingent association between rainfall and seasonal growth and the epigenetic marker of dimethyl H3K4, which disappears upon entry into the dry season and the acquisition of a dormant state. DNA methylation is not affected by a lack of H3K9 di-methyl and tri-methyl. Changes in methylation can occur between the wet and dry season. Proteome analysis of acid soluble fractions revealed an extensive reduction in ribosomal proteins and in proteins involved in chloroplasts and mitochondrial activities during the dry seasons concomitantly with up-regulation of molecular chaperone HSPs. Our results highlight mechanisms underlying Z. dumosum adaptation to seasonal climate variation. Particularly, summer dormancy is associated with a loss of the permissive epigenetic marker dimethyl H3K4, which might facilitate genome compaction concomitantly with a significant reduction in proteins involved in basic cell functions. HSP chaperones might safeguard the integrity of cell components. View Full-Text
Keywords: epigenetics; H3K9 methylation; H3K4 methylation; DNA methylation; seasonal climate change; summer dormancy; heat shock proteins; ribosomal proteins; Zygophyllum dumosum Boiss epigenetics; H3K9 methylation; H3K4 methylation; DNA methylation; seasonal climate change; summer dormancy; heat shock proteins; ribosomal proteins; Zygophyllum dumosum Boiss
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Khadka, J.; Yadav, N.S.; Granot, G.; Grafi, G. Seasonal Growth of Zygophyllum dumosum Boiss.: Summer Dormancy Is Associated with Loss of the Permissive Epigenetic Marker Dimethyl H3K4 and Extensive Reduction in Proteins Involved in Basic Cell Functions. Plants 2018, 7, 59.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Plants EISSN 2223-7747 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top