Next Article in Journal
Seed Priming with Glass Waste Microparticles and Red Light Irradiation Mitigates Thermal and Water Stresses in Seedlings of Moringa oleifera
Next Article in Special Issue
Anacardium occidentale Bark as an Antidiabetic Agent
Previous Article in Journal
Non-Invasive Evaluation of Different Soil Tillage and Seed Treatment Effects on the Microbial Originating Physiological Reactions of Developing Juvenile Maize
Previous Article in Special Issue
Study of the Antioxidant Properties of Filipendula ulmaria and Alnus glutinosa
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Hypericum Genus as a Natural Source for Biologically Active Compounds

by
Gonçalo Infante Caldeira
,
Luís Pleno Gouveia
,
Rita Serrano
and
Olga Duarte Silva
*
Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
*
Author to whom correspondence should be addressed.
Plants 2022, 11(19), 2509; https://doi.org/10.3390/plants11192509
Submission received: 31 August 2022 / Revised: 13 September 2022 / Accepted: 15 September 2022 / Published: 26 September 2022
(This article belongs to the Special Issue Medicinal Plant Extracts)

Abstract

:
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: “What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?” We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer’s, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.

1. Introduction

Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica, both in geographical areas of temperate climates and in high mountainous regions [1]. They have long been part of the medical therapeutic armamentarium, and some species are even mentioned in the “De Materia Medica” authored by Dioscorides (1st century) [2]. Hypericum species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and poisoning from venomous animal bites [3,4].
Traditional Chinese Medicine (or simply Chinese Medicine), which is one of the most well-structured and ancient systems of traditional medicine, utilizes 64 species of plants of the Hypericum genus (of which 33 are endemic to China) [5], including, to name just a few examples, Hypericum attenuatum Fisch. ex Choisy, Hypericum erectum Thunb., and Hypericum japonicum Thunb. Whole-plant decoctions are employed to treat hemoptysis, wounds, and burns. Hypericum japonicum (whole plant) is also used to treat jaundice, dysentery, and lung abscesses, and Hypericum scabrum L. (whole plant) is used for the treatment of hematemesis, hemafecia, and irregular menstruation [3].
In Portugal, 22 species of Hypericum genus plants have been identified so far [6]. The most used in local traditional medicine are the Hypericum perforatum L. herb, for depressive illnesses, and the Hypericum androsaemum L. herb, for hepatic disorders [7]. Hypericum foliosum Aiton, which is an endemic species in the Azores archipelago, is used by locals to treat hepatic disorders. This species belongs to the same section as Hypericum androsaemum, but until now, no studies have been conducted that focus on its use in Azores traditional medicine [8,9].
Out of all the Hypericum species, Hypericum perforatum, which is commonly known as St. John’s Wort, is one of the most widely employed medicinal plants by the publics of both more industrialized and less developed countries. It is described in the European, Chinese, and Indian pharmacopoeias, and it is commonly used for the control of mild depressive symptoms. This has led to intense research on its antidepressant activity in recent decades [10,11]. It is also used for the treatment of many health conditions, such as inflammation, biliary disorders, burns and skin diseases, diabetes, pain symptoms, such as migraines or headaches, among many others [3,4,10,12]. In traditional usage, formulations are produced from Hypericum perfuratum as aqueous or alcoholic extracts or infusions, as well as oils and tinctures, intended for ingestion, as well as for external treatments.
The extensive and diverse data collected over time, granted the elaboration of a community herbal monograph on the Hypericum perforatum herb (St. John’s Wort, Hyperici herba) by the “Committee on Herbal Medicinal Products” of the “European Medicines Agency”, is known for both its well-established medicinal uses and traditional uses. On the well-established medical uses, the monograph states formulations as an herbal medicinal product for the treatment of mild-to-moderate depressive episodes. As a traditional herbal medicinal product, formulations are detailed for the relief of temporary mental exhaustion, for the symptomatic treatment of minor inflammations of the skin (such as sunburns), and as an aid in the healing of minor wounds, as well as for the symptomatic relief of mild gastrointestinal discomfort [13].
The plants of the Hypericum genus and their compounds exert in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antifungal, astringent, antihyperglycemic, and hepatoprotective activities, as well as acetylcholinesterase and monoamine oxidase inhibitory activities [3,4,12,14].
Hypericin and hyperforin are the most well-known compounds, and they originated from the Hypericum species as a source of natural products. Hyperforin regulates the expressions of genes related to depressive states, while hypericin actively reduces stress-induced behaviors and increases the extracellular brain concentrations of glutamate and acetylcholine [15,16,17]. Hyperforin also has antimicrobial activity against microorganisms, such as Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa [18]. Both compounds are known to exert anticancer activity by increasing apoptosis and decreasing the cell viability in tumor-cell lines [19,20,21,22,23,24,25].
The concept of extracting and isolating natural products to use as single medicinal agents, or to serve as a base to develop synthetically derived compounds, is not new, and numerous compounds have been uncovered from Hypericum plants, showing distinct biological properties. These new compounds may eventually be employed in the treatment of diseases after appropriate studies on the effectiveness and safety, or they may serve as a model to synthesize new drugs. If proven viable, then they would enrich the therapeutic options available to modern allopathic medicine [12,14,26,27].
Significant advances in analytical technologies have expanded our capacities to evaluate plant extracts by establishing phytochemical profiles, and to identify their marker natural products, thus not only contributing to a better understanding of medicinal plants, but also for the development of new synthetic compounds inspired in molecular structures of natural origin [28,29].
Under this framework, we conducted a systematic bibliographic search to answer the question: “What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?”, focusing exclusively on studies that have confirmed the biological activities of isolated compounds, and describing the exact physiological parameter changes and how these changes were exerted.
Previous works recently published on the Hypericum genus have shown that the plants from this genus have a wide variety of secondary metabolites with diverse biological activities [3,4,30,31]. However, to date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological-activity outcomes. The aim of our work is to contribute useful information to fill in this gap.

2. Results

The information gathered with our bibliographic search is exhaustively presented in Table S1. The rows list the Hypericum species that are sources of natural products with confirmed biological activities. The columns indicate, from left to right, the compound class, followed by the compound found, method of measurement, in vitro or in vivo model used, outcome results of the measurements, comparative results within each study, possible therapeutic application, plant species, parts of the plant used, and type of extract. In the rightmost column, the reference citations of the study are described.

3. Materials and Methods

Our systematic review was conducted according to the Cochrane Collaboration guidelines on the subject. The data-screening methodology used is summarized in Figure 1. Scientific articles were retrieved by bibliographic searches of the Web of ScienceTM and PubmedTM databases, applying several terms and the Boolean connector “AND”: “Hypericum AND activity”, “Hypericum AND constituents”, “Hypericum AND compounds”, and “Hypericum AND components, in a time window between January 2010 and April 2022. After the search, duplicates were removed, and specific evaluation parameters were applied to check whether the selected articles fulfilled the established criteria. Abstracts were assessed to understand the pertinence of the information. Research articles focusing on culture studies, the distributions of compounds in different plant tissues, ethnobotanical inquiries, compound synthesis, the impact of external factors on the synthesis of the plant secondary metabolites, extraction methods and yields, market studies, insecticidal potential, genomics, and works not related to the biological activities of isolated compounds were excluded. Articles centered on medicinal plants not belonging to the Hypericum genus, or medicinal plant mixtures, were also excluded. Finally, the scientific articles that confirmed the biological activities of secondary metabolites originating in species from the Hypericum genus were selected, regardless of known or newly discovered compounds. From this final pool of scientific articles, only those in which the biological activities of secondary metabolites were considered relevant to the authors, in comparison with the substances used as controls, were included. All the plant species’ names were confirmed on the website www.theplantlist.org (last accessed on 30 April 2022) [32].
The first step of the search found 4620 articles; after the removal of duplicates, 773 remained. Out of these, 206 fulfilled the criteria to be used for our study.

4. Hypericum Genus Plants Isolated Compounds with In Vivo/In Vitro Activities

We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different plant species as sources for these natural products.
Several compounds with confirmed in vitro/in vivo activities were not isolated from a specific plant species but are very well known to belong to the plants from the Hypericum genus (namely, hypericin and hyperforin). Regarding specific plant species as sources of biologically active natural products, Hypericum sampsonii Hance was the species from which more compounds were isolated and tested (39 compounds), followed by Hypericum perforatum (33 compounds), Hypericum scabrum L. (30 compounds), and Hypericum japonicum Thunb. (22 compounds).
The compounds isolated from Hypericum sampsonii showed selective in vitro cytotoxicity against tumor-cell lines and in vitro anti-inflammatory activity. The cell-protection activity in vitro was also observed for some of these compounds, resulting in increased cell viability. The secondary metabolites from H. perforatum showed important in vitro activity in Alzheimer-related mechanisms, such as acetylcholinesterase inhibition, in vitro antimicrobial activity, in vitro/in vivo antidepressant activity by gene-expression regulation, and in vitro selective cytotoxicity against tumor-cell lines. The secondary metabolites from Hypericum scabrum showed in vitro cell-protection activity through the cell-viability increase. H. japonicum is a source of compounds with antimicrobial activity in vitro, and in vitro cell-protection activity by increasing the cell viability and decreasing the oxidative stress and reactive oxygen species formation.
The compounds isolated from H. attenuatum exhibited in vitro selective cytotoxicity and increased apoptosis against tumor-cell lines. The compounds from H. uralum showed in vitro antidepressant activity, in vitro cell-protection activity, and in vitro acetylcholinesterase inhibitory activity.

4.1. Class Compounds of Isolated Metabolites

The identified secondary metabolites fit into a wide variety of chemical classes: most belong to the acylphloroglucinols class (224 compounds), followed by xanthones (35 compounds), phloroglucinols (29 compounds), and flavonoids (22 compounds). We categorized the compounds according to their biological activities and based on the mechanisms of action shown. In this way, we had a wider picture of the clinical potential of the natural products originating from plants belonging to the Hypericum genus. Compounds with in vitro anticancer biological activity were the most frequent (145 compounds), followed by in vitro cell-protection (142 compounds), in vitro anti-inflammatory (60 compounds), in vitro antimicrobial (40 compounds), in vitro antidiabetic (29 compounds), in vitro antidepressant (22 compounds), in vitro anti-Alzheimer’s (21 compounds), and in vitro adipogenesis-inhibition (20 compounds) biological activities. A total of 13 other biological activities were identified with lesser frequency, of which skin healing and antiviral biological activities should be mentioned.

4.2. Class Compounds and Biological Activities

The phloroglucinols showed in vitro cytotoxicity against tumor-cell lines (fourteen compounds), in vitro cell protection (eight compounds), in vitro antidiabetic activity, through the decrease in the PTP1B activity (four compounds), and in vitro anti-inflammatory activity through mechanisms that lead to increased cell viability (two compounds). Similarly, the benzophenone compounds showed in vitro selective cytotoxicity against tumor-cell-line (eight compounds), cell-protection (nine compounds), anti-inflammatory (two compounds), antimalaria (one compound), and skin-healing (one compound) in vitro activities.
A total of 92 acylphloroglucinols, a subclass of phloroglucinols, showed in vitro cell-protection mechanisms, while 77 showed in vitro selective cytotoxicity against tumor-cell lines. The other compounds from this subclass showed a potential application on Alzheimer’s disease through the in vitro inhibition of the acetylcholinesterase activity; acylphloroglucinols also frequently exhibited in vitro antibacterial activity by decreasing the bacterial viability (21 compounds). Compounds with mechanisms related to in vitro antidepressant activity (namely, compounds that act on motor coordination, memory, or depressive behaviors) are also worthy of mention (14 compounds).
Xanthone compounds were frequently associated with in vitro selective cytotoxicity against tumor-cell lines (18 compounds), while others showed in vitro anti-inflammatory (8 compounds) and antimalaria mechanisms (2 compounds), being active against all the tested Plasmodium falciparum strains. In vitro antibacterial activity was also observed.
As mentioned before, hypericin and hyperforin are two of the most well-known secondary metabolites isolated from plants from the Hypericum genus. In our review, we were able to confirm the importance of these two secondary metabolites, to which several types of biological activities have been attributed. Hypericin predominantly showed in vitro cell-protection and anticancer activities, followed by in vitro antidepressant activity and photodynamic-therapy applications. Hyperforin was most frequently related to in vitro cell-protection, anticancer, antidiabetic, and antidepressant activities.
Our work also showed that hypericin, hyperforin, hyperoside, quercetin, and uliginosin B were the compounds more frequently identified and studied in the scientific articles analyzed, being cited in 23, 18, 17, 11, and 7 papers, respectively.

5. Comments

Several plants of the Hypericum genus are a source of natural products with clearly proven in vitro/in vivo biological activities.
Most of the studies we evaluated did not follow an ethnopharmacology rationale, which means that they did not focus on the confirmation of a certain biological activity related to the traditional medicinal use of the plant. Rather, they were wide phytochemical screenings intended to identify and characterize new natural products, which were then tested for a certain biological activity. Consequently, several of the assessed studies lacked information about which part of the plant and which solvent were used for the extraction. This information is crucial to determine the exact origin of natural products because their distributions vary within the plant parts.
Some studies have identified previously unknown compounds and have tested them for in vitro biological activities, of which no activity or low activity was observed. These compounds were not included in this review. However, testing such compounds for a wider variety of biological activities may be useful for a better understanding of their potentials.
Our review elicited that the tested natural products are frequently superior to the controls used to evaluate the biological activity in question. Further studies should be conducted utilizing other drugs used in clinical practice as controls to confirm the advantages of some plant compounds in comparison with synthetic drugs.
The identification of the isolated natural products’ biological activities constitutes a key first step to understanding exactly how these compounds may be useful to a concrete clinical application.
Concerning the potential clinical uses of Hypericum compounds, we must highlight some of the properties verified in the reviewed papers. The in vitro cell-protection and anti-inflammatory mechanisms exhibited by isolated compounds belonging to several compound classes were frequently correlated to an increase in the cell viability in the studied models. This increase in the cell viability was related to the ability of the compounds to decrease the induced oxidative stress, as well as the reactive oxygen species and nitric oxide production, or even modulate the gene expression to downregulate the enzymatic activity and cytokines related to the inflammatory process.
The in vitro anticancer activity was mostly shown by one of two different pathways. Hypericum compounds exhibited both the ability to exert direct selective cytotoxicity towards tumor-cell lines, which resulted in a decrease in such cell lines, and the ability to modulate several cellular mechanisms related to tumor progression, such as cytokine expression, apoptosis, gene expression, and cell migration. Most of the compounds exhibiting in vitro anticancer activity belong to the acylphloroglucinol class.
Acylphloroglucinols with anti-Alzheimer’s activity frequently exerted their in vitro activity by inhibiting the acetylcholinesterase activity and regulating the gene expression involved in the production of cytokines related to disease mechanisms, such as β-amyloid formation and deposition.
Acylphloroglucinols, as well as other compounds with in vitro antidepressant activity, can act through a wide variety of mechanisms. For instance, they showed the ability to regulate the genes involved in the mechanisms of depression, such as monoamine oxidase expression and receptor activation. Serotonin and noradrenaline reuptakes were also modulated by Hypericum compounds.
The microorganisms most frequently tested for susceptibility to the Hypericum compounds’ antimicrobial activity were methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis.
Acylphloroglucinols, flavonoids, and anthraquinones, involved in adipogenesis inhibition, showed in vitro abilities to decrease the pancreatic lipase activity and intracellular lipid accumulation, thus causing a decrease in adipose-tissue formation.
To this day, very few compounds have been tested for their antiviral activity. Our search showed that only nine compounds exhibited in vitro antiviral activity, and mostly due to the decreased viral RNAse H and RNA-dependent DNA polymerase activities that lead to a decrease in viral replication. More studies assessing the potential antiviral activity of Hypericum compounds would be of extreme pertinence, namely, to find potential candidates to fight SARS-CoV2 infection.
Additional studies are required to assess the human toxicity, potential to interact with other drugs, dosage, and effectiveness, amongst other pharmacological and physiological parameters.
Due to the current difficulty of developing new drugs through high-throughput synthesis and combinatorial chemistry-based drug development methods, screening natural products for their molecular targets and mechanisms of action can be an effective way to obtain useful information for synthesizing new derived compounds with greater bioavailability and effectiveness, or lower toxicity, than the original natural products. This, in turn, would spare copious amounts of time and financial investment when compared with creating new pharmaceutical agents from scratch.

6. Conclusions

As a conclusion of our exhaustive review, we can state that plants from the genus Hypericum are good sources of natural products with potential clinical biological activities. Besides hypericin and hyperforin, phloroglucinol, acylphloroglucinol, xanthone, and benzophenone compounds were the products obtained from Hypericum genus plants, and their biological activities were precisely evaluated.
The biological activities observed for natural products isolated from Hypericum species only partially justify their use in traditional medicine. In some instances, the natural products exhibited biological activities not related to the medicinal use of the plant, and further research is needed to widen their therapeutic usage.

Supplementary Materials

Author Contributions

The data were collected, analyzed, and interpreted by G.I.C., L.P.G., R.S. and O.D.S. Moreover, all the authors revised, read, and approved the manuscript. A special thanks to Henrique Pereira for his help with the data processing. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded, in part, by iMed.ULisboa (UID/DTP/04138/2013) from Fundação para a Ciência e a Tecnologia (FCT), Portugal.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Crockett, S.; Robson, N. Taxonomy and Chemotaxonomy of the Genus Hypericum. Med. Aromat. Plant Sci. Biotechnol. 2011, 5, 1–13. [Google Scholar] [PubMed]
  2. Beck, L. Pedanius Dioscorides of Anazarbus-De Materia Medica; Olms: Weidman, Germany, 2005; p. 540. [Google Scholar]
  3. Zhang, R.; Ji, Y.; Zhang, X.; Kennelly, E.J.; Long, C. Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2020, 254, 112686. [Google Scholar] [CrossRef] [PubMed]
  4. Marrelli, M.; Statti, G.; Conforti, F. Hypericum spp.: An Update on the Biological Activities and Metabolic Profiles. Mini-Rev. Med. Chem. 2020, 20, 66–87. [Google Scholar] [CrossRef]
  5. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=116180 (accessed on 11 December 2021).
  6. Menezes de Sequeira, M.; Espírito-Santo, D.; Aguiar, C.; Capelo, J.; Honrado, J. (Eds.) Checklist da Flora de Portugal (Continental, Açores e Madeira); Associação Lusitana de Fitossociologia: Lisboa, Portugal, 2012; p. 74. [Google Scholar]
  7. Valentao, P.; Dias, A.; Ferreira, M.; Silva, B.; Andrade, P.B.; Bastos, M.L.; Seabra, R.M. Variability in phenolic composition of Hypericum androsaemum. Nat. Prod. Res. 2003, 17, 135–140. [Google Scholar] [CrossRef] [PubMed]
  8. Ferreira, A.; Proenca, C.; Serralheiro, M.L.; Araujo, M.E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
  9. Rainha, N.; Lima, E.; Baptista, J.; Rodrigues, C. Antioxidant properties, total phenolic, total carotenoid and chlorophyll content of anatomical parts of Hypericum foliosum. J. Med. Plants Res. 2011, 5, 1930–1940. [Google Scholar]
  10. Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 2017, 200, 136–146. [Google Scholar] [CrossRef] [PubMed]
  11. Sarris, J.; Nierenberg, A.A.; Schweitzer, I.; Alpert, J.E.; Rosenbaum, J.F.; Iovieno, N.; Covino, J.; Fava, M.; Mischoulon, D. Conditional probability of response or nonresponse of placebo compared with antidepressants or St John’s Wort in major depressive disorder. J. Clin. Psychopharmacol. 2013, 33, 827–830. [Google Scholar] [CrossRef] [PubMed]
  12. Marrelli, M.; Statti, G.; Conforti, F.; Menichini, F. New potential pharmaceutical applications of Hypericum species. Mini-Rev. Med. Chem. 2016, 16, 710–720. [Google Scholar] [CrossRef] [PubMed]
  13. Agency, E.M. Community Herbal Monograph on Hypericum perforatum L., Herba (Well-Established Medicinal Use); Committee on Herbal Medicinal Products: Amsterdam, The Netherlands, 2009. [Google Scholar]
  14. Avato, P. A Survey on the Hypericum genus: Secondary metabolites and bioactivity. Stud. Nat. Prod. Chem. 2005, 30, 603–634. [Google Scholar]
  15. Verjee, S.; Weston, A.; Kolb, C.; Kalbhenn-Aziz, H.; Butterweck, V. Hyperforin and Miquelianin from St. John’s Wort Attenuate Gene Expression in Neuronal Cells After Dexamethasone-Induced Stress. Planta Med. 2018, 84, 696–703. [Google Scholar]
  16. Zhai, X.J.; Chen, F.; Chen, C.; Zhu, C.R.; Lu, Y.N. LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model. J. Ethnopharmacol. 2015, 169, 363–369. [Google Scholar] [CrossRef]
  17. Cervo, L.; Mennini, T.; Rozio, M.; Ekalle-Soppo, C.B.; Canetta, A.; Burbassi, S.; Guiso, G.; Pirona, L.; Riva, A.; Morazzoni, P.; et al. Potential antidepressant properties of IDN 5491 (hyperforin-trimethoxybenzoate), a semisynthetic ester of hyperforin. Eur. Neuropsychopharmacol. 2005, 15, 211–218. [Google Scholar] [CrossRef] [PubMed]
  18. Schempp, C.M.; Pelz, K.; Wittmer, A.; Schöpf, E.; Simon, J.C. Antibacterial activity of hyperforin from St John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet 1999, 353, 2129. [Google Scholar] [CrossRef]
  19. Imreova, P.; Feruszova, J.; Kyzek, S.; Bodnarova, K.; Zduriencikova, M.; Kozics, K.; Mucaji, P.; Galova, E.; Sevcovicova, A.; Miadokova, E.; et al. Hyperforin Exhibits Antigenotoxic Activity on Human and Bacterial Cells. Molecules 2017, 22, 167. [Google Scholar] [CrossRef] [PubMed]
  20. Mirmalek, S.A.; Azizi, M.A.; Jangholi, E.; Yadollah-Damavandi, S.; Javidi, M.A.; Parsa, Y.; Parsa, T.; Salimi-Tabatabaee, S.A.; Ghasemzadeh Kolagar, H.; Alizadeh-Navaei, R. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line. Cancer Cell Int. 2015, 16, 3. [Google Scholar] [CrossRef]
  21. Yi, J.; Yang, X.; Zheng, L.; Yang, G.; Sun, L.; Bao, Y.; Wu, Y.; Huang, Y.; Yu, C.; Yang, S.N.; et al. Photoactivation of hypericin decreases the viability of RINm5F insulinoma cells through reduction in JNK/ERK phosphorylation and elevation of caspase-9/caspase-3 cleavage and Bax-to-Bcl-2 ratio. Biosci. Rep. 2015, 35, e00195. [Google Scholar] [CrossRef]
  22. Zaher, M.; Tang, R.; Bombarda, I.; Merhi, F.; Bauvois, B.; Billard, C. Hyperforin induces apoptosis of chronic lymphocytic leukemia cells through upregulation of the BH3-only protein Noxa. Int J. Oncol. 2012, 40, 269–276. [Google Scholar]
  23. Sharma, K.V.; Davids, L.M. Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment. Cell Biol. Int. 2012, 36, 1261–1266. [Google Scholar] [CrossRef]
  24. Liu, J.-Y.; Liu, Z.; Wang, D.-M.; Li, M.-M.; Wang, S.-X.; Wang, R.; Chen, J.-P.; Wang, Y.-F.; Yang, D.-P. Induction of apoptosis in K562 cells by dicyclohexylammonium salt of hyperforin through a mitochondrial-related pathway. Chem. Biol. Interact. 2011, 190, 91–101. [Google Scholar] [CrossRef]
  25. Berlanda, J.; Kiesslich, T.; Engelhardt, V.; Krammer, B.; Plaetzer, K. Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J. Photochem. Photobiol. B 2010, 100, 173–180. [Google Scholar] [CrossRef] [PubMed]
  26. Nahrstedt, A.; Butterweck, V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 1997, 30 (Suppl. S2), 129–134. [Google Scholar] [CrossRef] [PubMed]
  27. Vollmer, J.; Rosenson, J. Chemistry of St. John’s Wort Hypericin and Hyperforin. J. Chem. Educ. 2004, 81, 1450–1456. [Google Scholar] [CrossRef]
  28. Sashidhara, K.; Rosaiah, J. Various dereplication strategies using LC-MS for rapid natural product lead identification and drug discovery. Nat. Prod. Commun. 2006, 2, 193–202. [Google Scholar] [CrossRef]
  29. Es-Safi, N.; Essassi, E.M.; Banoub, J. Mass Spectrometry as a Powerful Analytical Technique for the Structural Characterization of Synthesized and Natural Products. In Detection of Biological Agents for the Prevention of Bioterrorism; Chemistry and Biology; NATO: Washington, DC, USA, 2010; pp. 319–360. [Google Scholar]
  30. Tanaka, N.; Kashiwada, Y. Characteristic metabolites of Hypericum plants: Their chemical structures and biological activities. J. Nat. Med. 2021, 75, 423–433. [Google Scholar] [CrossRef]
  31. Zhao, J.; Liu, W.; Wang, J.C. Recent advances regarding constituents and bioactivities of plants from the genus Hypericum. Chem. Biodivers. 2015, 12, 309–349. [Google Scholar] [CrossRef]
  32. Available online: www.theplantlist.org (accessed on 30 April 2022).
  33. Wang, J.; Shi, M.J.; Wang, J.J.; Li, J.; Ji, T.F. Polycyclic Polyprenylated Acylphloroglucinol Derivatives from Hypericum acmosepalum. Molecules 2019, 24, 50. [Google Scholar] [CrossRef]
  34. Wang, X.; Shi, M.; Wang, J.; Suo, X.; Sun, H.; Zhen, B.; Sun, H.; Li, J.; Ji, T. Hyperacmosins E–G, three new homoadamantane-type polyprenylated acylphloroglucinols from Hypericum acmosepalum. Fitoterapia 2020, 142, 104535. [Google Scholar] [CrossRef]
  35. Wang, X.; Wang, J.J.; Suo, X.Y.; Sun, H.R.; Zhen, B.; Sun, H.; Li, J.G.; Ji, T.F. Hyperacmosins H–J, three new polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum acmosepalum. J. Asian Nat. Prod. Res. 2020, 22, 521–530. [Google Scholar] [CrossRef]
  36. Suo, X.Y.; Shi, M.J.; Dang, J.; Yue, H.L.; Tao, Y.D.; Zhen, B.; Wang, J.J.; Wang, X.; Sun, H.R.; Sun, H.; et al. Two new polycyclic polyprenylated acylphloroglucinols derivatives from Hypericum acmosepalum. J. Asian Nat. Prod. Res. 2021, 23, 1068–1076. [Google Scholar] [CrossRef]
  37. Nedialkov, P.T.; Ilieva, Y.; Momekov, G.; Kokanova-Nedialkova, Z. Cytotoxic prenylated acylphloroglucinols from Hypericum annulatum. Fitoterapia 2018, 127, 375–382. [Google Scholar] [CrossRef] [PubMed]
  38. Ccana-Ccapatinta, G.V.; Stolz, E.D.; da Costa, P.F.; Rates, S.M.; von Poser, G.L. Acylphloroglucinol derivatives from Hypericum andinum: Antidepressant-like activity of andinin A. J. Nat. Prod. 2014, 77, 2321–2325. [Google Scholar] [CrossRef] [PubMed]
  39. Zhen, B.; Hu, J.-W.; Wang, J.-J.; Shi, M.-J.; Li, L.; Ci, R.; Jiang, J.-D.; Ji, T.-F. Hyperascyrins L–N, rare methylated polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum ascyron. J. Asian Nat. Prod. Res. 2019, 21, 409–418. [Google Scholar] [CrossRef]
  40. Niwa, K.; Tanaka, N.; Tatano, Y.; Yagi, H.; Kashiwada, Y. Hypascyrins A–E, Prenylated Acylphloroglucinols from Hypericum ascyron. J. Nat. Prod. 2019, 82, 2754–2760. [Google Scholar] [CrossRef] [PubMed]
  41. Hu, Y.L.; Hu, K.; Kong, L.M.; Xia, F.; Yang, X.W.; Xu, G. Norascyronones A and B, 2,3,4- nor-Polycyclic Polyprenylated Acylphloroglucinols from Hypericum ascyron. Org. Lett. 2019, 21, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
  42. Hu, J.-W.; Shi, M.-J.; Wang, J.-J.; Li, L.; Jiang, J.-D.; Ji, T.-F. Methylated Polycyclic Polyprenylated Acylphloroglucinol Derivatives from Hypericum ascyron. J. Nat. Prod. 2018, 81, 2348–2356. [Google Scholar] [CrossRef]
  43. Li, D.Y.; Xue, Y.B.; Zhu, H.C.; Li, Y.; Sun, B.; Liu, J.J.; Yao, G.M.; Zhang, J.W.; Du, G.; Zhang, Y.H. Hyperattenins A–I, bioactive polyprenylated acylphloroglucinols from Hypericum attenuatum Choisy. Rsc. Adv. 2015, 5, 5277–5287. [Google Scholar] [CrossRef]
  44. Xu, W.-J.; Tang, P.-F.; Lu, W.-J.; Zhang, Y.-Q.; Wang, X.-B.; Zhang, H.; Luo, J.; Kong, L.-Y. Hyperberins A and B, Type B Polycyclic Polyprenylated Acylphloroglucinols with Bicyclo[5.3.1]hendecane Core from Hypericum beanii. Org. Lett. 2019, 21, 8558–8562. [Google Scholar] [CrossRef]
  45. Chen, X.-Q.; Li, Y.; Li, K.-Z.; Peng, L.-Y.; He, J.; Wang, K.; Pan, Z.-H.; Cheng, X.; Li, M.-M.; Zhao, Q.-S.; et al. Spirocyclic acylphloroglucinol derivatives from Hypericum beanii. Chem. Pharm. Bull. 2011, 59, 1250–1253. [Google Scholar] [CrossRef]
  46. Zhou, X.; Xu, W.; Li, Y.; Zhang, M.; Tang, P.; Lu, W.; Li, Q.; Zhang, H.; Luo, J.; Kong, L. Anti-Inflammatory, Antioxidant, and Anti-Nonalcoholic Steatohepatitis Acylphloroglucinol Meroterpenoids from Hypericum bellum Flowers. J. Agric. Food Chem. 2021, 69, 646–654. [Google Scholar] [CrossRef] [PubMed]
  47. Franca, H.S.; Rocha, L.; Fernande, C.P.; Ruiz, A.L.T.G.; de Carvalho, J.E. Antiproliferative activity of the hexanic extract and phloroglucinols from Hypericum brasiliense. Rev. Bras. Farmacogn. 2013, 23, 844–847. [Google Scholar] [CrossRef]
  48. Zhang, H.B.; Zhang, X.; Jiang, K.; Qu, S.J.; Meng, L.H.; Lu, Q.; Tan, C.H. Polycyclic polyprenylated acylphloroglucinols from Hypericum choisianum. Nat. Prod. Res. 2021, 35, 195–202. [Google Scholar] [CrossRef] [PubMed]
  49. Liu, X.; Yang, X.W.; Chen, C.Q.; Wu, C.Y.; Zhang, J.J.; Ma, J.Z.; Wang, H.; Yang, L.X.; Xu, G. Bioactive polyprenylated acylphloroglucinol derivatives from Hypericum cohaerens. J. Nat. Prod. 2013, 76, 1612–1618. [Google Scholar] [CrossRef]
  50. Qiu, D.; Zhou, M.; Chen, J.; Wang, G.; Lin, T.; Huang, Y.; Yu, F.; Ding, R.; Sun, C.; Tian, W.; et al. Hyperelodiones A–C, monoterpenoid polyprenylated acylphoroglucinols from Hypericum elodeoides, induce cancer cells apoptosis by targeting RXRalpha. Phytochemistry 2020, 170, 112216. [Google Scholar] [CrossRef] [PubMed]
  51. Lu, S.X.; Tanaka, N.; Tatano, Y.; Kashiwada, Y. Erecricins A–E, prenylated acylphloroglucinols from the roots of Hypericum erectum. Fitoterapia 2016, 114, 188–193. [Google Scholar] [CrossRef] [PubMed]
  52. Zhang, X.-W.; Ye, Y.-S.; Xia, F.; Yang, X.-W.; Xu, G. Diverse Polyphenols from Hypericum faberi. Nat. Prod. Bioprospect. 2019, 9, 215–221. [Google Scholar] [CrossRef] [PubMed]
  53. Lu, W.J.; Xu, W.J.; Zhang, M.H.; Zhang, Y.Q.; Li, Y.R.; Zhang, H.; Luo, J.; Kong, L.Y. Diverse Polycyclic Polyprenylated Acylphloroglucinol Congeners with Anti-Nonalcoholic Steatohepatitis Activity from Hypericum forrestii. J. Nat. Prod. 2021, 84, 1135–1148. [Google Scholar] [CrossRef]
  54. Ma, J.; Zang, Y.D.; Zhang, J.J.; Li, C.J.; Li, Y.; Su, Y.L.; Wang, A.G.; Zhang, D.M. Nine prenylated acylphloroglucinols with potential anti-depressive and hepatoprotective activities from Hypericum scabrum. Bioorg. Chem. 2021, 107, 104529. [Google Scholar] [CrossRef]
  55. Zong, J.F.; Zhang, M.M.; Zhou, Y.B.; Li, J.; Hou, A.J.; Lei, C. Polyprenylated acylphloroglucinol meroterpenoids with PTP1B inhibition from Hypericum forrestii. Fitoterapia 2021, 153, 104959. [Google Scholar] [CrossRef] [PubMed]
  56. Yang, X.W.; Li, M.M.; Liu, X.; Ferreira, D.; Ding, Y.; Zhang, J.J.; Liao, Y.; Qin, H.B.; Xu, G. Polycyclic Polyprenylated Acylphloroglucinol Congeners Possessing Diverse Structures from Hypericum henryi. J. Nat. Prod. 2015, 78, 885–895. [Google Scholar] [CrossRef]
  57. Ye, Y.-S.; Wu, M.; Jiang, N.-N.; Lao, Y.-Z.; Fu, W.-W.; Liu, X.; Yang, X.-W.; Zhang, J.; Xu, H.-X.; Xu, G. Dearomatized Isoprenylated Acylphloroglucinol Derivatives with Potential Antitumor Activities from Hypericum henryi. Nat. Prod. Bioprospect. 2020, 10, 1–11. [Google Scholar] [CrossRef]
  58. Chen, X.-Q.; Li, Y.; Cheng, X.; Wang, K.; He, J.; Pan, Z.-H.; Li, M.-M.; Peng, L.-Y.; Xu, G.; Zhao, Q.-S. Polycyclic polyprenylated acylphloroglucinols and chromone O-glucosides from Hypericum henryi subsp. uraloides. Chem. Biodivers. 2010, 7, 196–204. [Google Scholar] [CrossRef]
  59. Ye, Y.; Yang, X.-W.; Zhou, Y.; Xu, G. homo-Adamantane type polycyclic polyprenylated acylphloroglucinols from Hypericum hookerianum. Fitoterapia 2019, 133, 43–50. [Google Scholar] [CrossRef] [PubMed]
  60. Wang, Q.-Q.; Wang, X.-D.; Wu, L.-Z.; Fang, Q.-Q.; Liu, Y.-N.; Jiang, K.; Qu, S.-J.; Tan, C.-H. Polyprenylated acylphloroglucinols as deubiquitinating protease USP7 inhibitors from Hypericum hookerianum. Fitoterapia 2020, 146, 104678. [Google Scholar] [CrossRef] [PubMed]
  61. Li, Y.-P.; Hu, K.; Yang, X.-W.; Xu, G. Antibacterial Dimeric Acylphloroglucinols from Hypericum japonicum. J. Nat. Prod. 2018, 81, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
  62. Peng, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Discovery of phloroglucinols from Hypericum japonicum as ferroptosis inhibitors. Fitoterapia 2021, 153, 104984. [Google Scholar] [CrossRef] [PubMed]
  63. Alfaro, R.A.; Gomez-Sandoval, Z.; Mammino, L. Evaluation of the antiradical activity of hyperjovinol-A utilizing donor-acceptor maps. J. Mol. Model. 2014, 20, 2337. [Google Scholar] [CrossRef] [PubMed]
  64. Tanaka, N.; Otani, M.; Kashiwada, Y.; Takaishi, Y.; Shibazaki, A.; Gonoi, T.; Shiro, M.; Kobayashi, J.i. Petiolins J–M, prenylated acylphloroglucinols from Hypericum pseudopetiolatum var. kiusianum. Bioorg. Med. Chem. Lett. 2010, 20, 4451–4455. [Google Scholar] [CrossRef]
  65. Zhang, N.; Shi, Z.; Xu, Q.; Sun, W.; Gu, L.; Xie, S.; Guo, Y.; Duan, Y.; Zhang, K.; Qi, C.; et al. Longisglucinols A–C, Structurally Intriguing Polycyclic Polyprenylated Acylphloroglucinols with Anti-inflammatory Activity from Hypericum longistylum. Org. Lett. 2020, 22, 7926–7929. [Google Scholar] [CrossRef]
  66. Tocci, N.; Weil, T.; Perenzoni, D.; Moretto, M.; Nurk, N.; Madrinan, S.; Ferrazza, R.; Guella, G.; Mattivi, F. Potent Antifungal Properties of Dimeric Acylphloroglucinols from Hypericum mexicanum and Mechanism of Action of a Highly Active 3’Prenyl Uliginosin B. Metabolites 2020, 10, 459. [Google Scholar] [CrossRef]
  67. Zeng, Y.R.; Yi, P.; Gu, W.; Xiao, C.X.; Huang, L.J.; Tian, D.S.; Yan, H.; Chen, D.Z.; Yuan, C.M.; Hao, X.J. Hypermonins A and B, two 6-norpolyprenylated acylphloroglucinols with unprecedented skeletons from Hypericum monogynum. Org. Biomol. Chem. 2018, 16, 4195–4198. [Google Scholar] [CrossRef] [PubMed]
  68. Zeng, Y.R.; Li, Y.N.; Zhang, Z.Z.; Hu, Z.X.; Gu, W.; Huang, L.J.; Li, Y.M.; Yuan, C.M.; Hao, X.J. Hypermoins A–D: Rearranged Nor-Polyprenylated Acylphloroglucinols from the Flowers of Hypericum monogynum. J. Org. Chem. 2021, 86, 7021–7027. [Google Scholar] [CrossRef]
  69. Zeng, Y.-R.; Li, Y.-N.; Lou, H.-Y.; Jian, J.-Y.; Gu, W.; Huang, L.-J.; Du, G.-H.; Yuan, C.-M.; Hao, X.-J. Polycyclic polyprenylated acylphloroglucinol derivatives with neuroprotective effects from Hypericum monogynum. J. Asian Nat. Prod. Res. 2021, 23, 73–81. [Google Scholar] [CrossRef]
  70. Pinhatti, A.V.; de Barros, F.M.C.; de Farias, C.B.; Schwartsmann, G.; Poser, G.L.v.; Abujamra, A.L. Antiproliferative activity of the dimeric phloroglucinol and benzophenone derivatives of Hypericum spp. native to southern Brazil. Anticancer. Drugs 2013, 24, 699–703. [Google Scholar] [CrossRef]
  71. Stolz, E.D.; Hasse, D.R.; von Poser, G.L.; Rates, S.M.K. Uliginosin B, a natural phloroglucinol derivative, presents a multimediated antinociceptive effect in mice. J. Pharm. Pharmacol. 2014, 66, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
  72. Rahman, M.M.; Shiu, W.K.P.; Gibbons, S.; Malkinson, J.P. Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. Eur. J. Med. Chem. 2018, 155, 255–262. [Google Scholar] [CrossRef]
  73. Shiu, W.K.; Rahman, M.M.; Curry, J.; Stapleton, P.; Zloh, M.; Malkinson, J.P.; Gibbons, S. Antibacterial acylphloroglucinols from Hypericum olympicum. J. Nat. Prod. 2012, 75, 336–343. [Google Scholar] [CrossRef] [PubMed]
  74. Liu, Y.-Y.; Ao, Z.; Xu, Q.-Q.; Zhu, D.-R.; Chen, C.; Wang, X.-B.; Luo, J.-G.; Kong, L.-Y. Hyperpatulols A–I, spirocyclic acylphloroglucinol derivatives with anti-migration activities from the flowers of Hypericum patulum. Bioorg. Chem. 2019, 87, 409–416. [Google Scholar] [CrossRef] [PubMed]
  75. Duan, Y.; Deng, Y.; Bu, P.; Xie, S.; Guo, Y.; Shi, Z.; Guo, Y.; Cao, Y.; Qi, C.; Zhang, Y. Discovery of nor-bicyclic polyprenylated acylphloroglucinols possessing diverse architectures with anti-hepatoma activities from Hypericum patulum. Bioorg. Chem. 2021, 111, 104902. [Google Scholar] [CrossRef]
  76. Duan, Y.; Xie, S.; Bu, P.; Guo, Y.; Shi, Z.; Guo, Y.; Cao, Y.; Sun, W.; Qi, C.; Zhang, Y. Hypaluton A, an Immunosuppressive 3,4-nor-Polycyclic Polyprenylated Acylphloroglucinol from Hypericum patulum. J. Org. Chem. 2021, 86, 6478–6485. [Google Scholar] [CrossRef]
  77. Guo, Y.; Zhang, N.; Duan, X.Y.; Cao, Y.F.; Xue, Y.B.; Luo, Z.W.; Zhu, H.C.; Chen, C.M.; Wang, J.P.; Zhang, Y.H. Hyperforatins L–U: Prenylated acylphloroglucinols with a terminal double bond from Hypericum perforatum L. (St John’s Wort). Phytochemistry 2019, 164, 41–49. [Google Scholar] [CrossRef] [PubMed]
  78. Guo, Y.; Zhang, N.; Sun, W.G.; Duan, X.Y.; Zhang, Q.; Zhou, Q.; Chen, C.M.; Zhu, H.C.; Luo, Z.W.; Liu, J.J.; et al. Bioactive polycyclic polyprenylated acylphloroglucinols from Hypericum perforatum. Org. Biomol. Chem. 2018, 16, 8130–8143. [Google Scholar] [CrossRef] [PubMed]
  79. Guo, Y.; Zhang, N.; Chen, C.; Huang, J.; Li, X.-N.; Liu, J.; Zhu, H.; Tong, Q.; Zhang, J.; Luo, Z.; et al. Tricyclic Polyprenylated Acylphloroglucinols from St John’s Wort, Hypericum perforatum. J. Nat. Prod. 2017, 80, 1493–1504. [Google Scholar] [CrossRef]
  80. Lou, H.; Yi, P.; Hu, Z.; Li, Y.; Zeng, Y.; Gu, W.; Huang, L.; Yuan, C.; Hao, X. Polycyclic polyprenylated acylphloroglucinols with acetylcholinesterase inhibitory activities from Hypericum perforatum. Fitoterapia 2020, 143, 104550. [Google Scholar] [CrossRef]
  81. Lou, H.Y.; Li, Y.N.; Yi, P.; Jian, J.Y.; Hu, Z.X.; Gu, W.; Huang, L.J.; Li, Y.M.; Yuan, C.M.; Hao, X.J. Hyperfols A and B: Two Highly Modified Polycyclic Polyprenylated Acylphloroglucinols from Hypericum perforatum. Org. Lett. 2020, 22, 6903–6906. [Google Scholar] [CrossRef]
  82. Shinjyo, N.; Nakayama, H.; Li, L.; Ishimaru, K.; Hikosaka, K.; Suzuki, N.; Yoshida, H.; Norose, K. Hypericum perforatum extract and hyperforin inhibit the growth of neurotropic parasite Toxoplasma gondii and infection-induced inflammatory responses of glial cells in vitro. J. Ethnopharmacol. 2021, 267, 113525. [Google Scholar] [CrossRef] [PubMed]
  83. Guo, Y.; Cao, Y.; Qi, C.; Tong, Q.; Chen, C.; Yang, J.; Zhu, H.; Zhang, Y. Polycyclic polyprenylated acylphloroglucinols with immunosuppressive activity from Hypericum perforatum and absolute configurations assignment of previously reported analogues. Bioorg. Chem. 2021, 114, 105144. [Google Scholar] [CrossRef]
  84. Guo, Y.; Huang, F.; Sun, W.; Zhou, Y.; Chen, C.; Qi, C.; Yang, J.; Li, X.N.; Luo, Z.; Zhu, H.; et al. Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer’s activity from St. John’s wort. Chem. Sci. 2021, 12, 11438–11446. [Google Scholar] [CrossRef]
  85. Cargnin, S.T.; Vieira Pde, B.; Cibulski, S.; Cassel, E.; Vargas, R.M.; Montanha, J.; Roehe, P.; Tasca, T.; von Poser, G.L. Anti-Trichomonas vaginalis activity of Hypericum polyanthemum extract obtained by supercritical fluid extraction and isolated compounds. Parasitol. Int. 2013, 62, 112–117. [Google Scholar] [CrossRef]
  86. Zong, J.F.; Hu, Z.; Shao, Y.Y.; Shi, Q.; Zhang, M.M.; Zhou, Y.B.; Li, J.; Hou, A.J. Hyperprins A and B, Two Complex Meroterpenoids from Hypericum przewalskii. Org. Lett. 2020, 22, 2797–2800. [Google Scholar] [CrossRef]
  87. Sun, H.; Wang, J.; Zhen, B.; Wang, X.; Suo, X.; Lin, M.; Jiang, J.; Ji, T. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum pseudohenryi. Phytochemistry 2021, 187, 112761. [Google Scholar] [CrossRef] [PubMed]
  88. Zhu, H.C.; Chen, C.M.; Yang, J.; Li, X.N.; Liu, J.J.; Sun, B.; Huang, S.X.; Li, D.Y.; Yao, G.M.; Luo, Z.W.; et al. Bioactive Acylphloroglucinols with Adamantyl Skeleton from Hypericum sampsonii. Org. Lett. 2014, 16, 6322–6325. [Google Scholar] [CrossRef] [PubMed]
  89. Zhang, Z.Z.; Zeng, Y.R.; Li, Y.N.; Hu, Z.X.; Huang, L.J.; Gu, W.; Hao, X.J.; Yuan, C.M. Two new seco-polycyclic polyprenylated acylphloroglucinol from Hypericum sampsonii. Org. Biomol. Chem. 2021, 19, 216–219. [Google Scholar] [CrossRef] [PubMed]
  90. Moghadam, S.E.; Farimani, M.M.; Soroury, S.; Ebrahimi, S.N.; Jabbarzadeh, E. Hypermongone C Accelerates Wound Healing through the Modulation of Inflammatory Factors and Promotion of Fibroblast Migration. Molecules 2019, 24, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  91. Liu, R.; Su, Y.; Yang, J.; Wang, A. Polyprenylated acylphloroglucinols from Hypericum scabrum. Phytochemistry 2017, 142, 38–50. [Google Scholar] [CrossRef]
  92. Hu, J.; Gao, W.; Xu, F.; Wei, C.; Shi, M.; Sun, H.; Zhen, B.; Wang, J.; Ji, T.; Jiang, J. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum scabrum. Bioorg. Med. Chem. Lett. 2017, 27, 4932–4936. [Google Scholar] [CrossRef]
  93. Gao, W.; Hu, J.W.; Hou, W.Z.; Xu, F.; Zhao, J.; Xu, F.; Sun, H.; Xing, J.G.; Peng, Y.; Wang, X.L.; et al. Four new prenylated phloroglucinol derivatives from Hypericum scabrum. Tetrahedron. Lett. 2016, 57, 2244–2248. [Google Scholar] [CrossRef]
  94. Gao, W.; Hou, W.Z.; Zhao, J.; Xu, F.; Li, L.; Xu, F.; Sun, H.; Xing, J.G.; Peng, Y.; Wang, X.L.; et al. Polycyclic Polyprenylated Acylphloroglucinol Congeners from Hypericum scabrum. J. Nat. Prod. 2016, 79, 1538–1547. [Google Scholar] [CrossRef]
  95. Soroury, S.; Alilou, M.; Gelbrich, T.; Tabefam, M.; Danton, O.; Ebrahimi, S.N.; Kaiser, M.; Hamburger, M.; Stuppner, H.; Moridi Farimani, M. Unusual derivatives from Hypericum scabrum. Sci. Rep. 2021, 10, 22181. [Google Scholar] [CrossRef]
  96. Wang, H.R.; Shao, B.; Yu, H.Y.; Xu, F.B.; Wang, P.Y.; Yu, K.Y.; Han, Y.F.; Song, M.; Li, Y.F.; Cao, Z. Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells. Chem. Biol. Interact. 2019, 299, 15–26. [Google Scholar] [CrossRef]
  97. Bridi, H.; Beckenkamp, A.; Maurmann, N.; Elingson, B.; Buffon, A.; Pranke, P.; von Poser, G.L. Phloroglucinol derivatives from Hypericum species induce in vitro proliferation of cells involved in the wound healing process. Nat. Prod. Res. 2019, 35, 4648–4652. [Google Scholar] [CrossRef] [PubMed]
  98. Ma, L.; Pan, X.; Zhou, F.; Liu, K.; Wang, L. Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation. Brain Res. 2018, 1678, 254–261. [Google Scholar] [CrossRef] [PubMed]
  99. Dellafiora, L.; Galaverna, G.; Cruciani, G.; Dall’Asta, C.; Bruni, R. On the Mechanism of Action of Anti-Inflammatory Activity of Hypericin: An In Silico Study Pointing to the Relevance of Janus Kinases Inhibition. Molecules 2018, 23, 3058. [Google Scholar] [CrossRef] [PubMed]
  100. Novelli, M.; Beffy, P.; Gregorelli, A.; Porozov, S.; Mascia, F.; Vantaggiato, C.; Masiello, P.; Menegazzi, M. Persistence of STAT-1 inhibition and induction of cytokine resistance in pancreatic beta cells treated with St John’s wort and its component hyperforin. J. Pharm. Pharmacol. 2019, 71, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  101. Huang, W.; Cheng, P.; Yu, K.; Han, Y.; Song, M.; Li, Y. Hyperforin attenuates aluminum-induced Abeta production and Tau phosphorylation via regulating Akt/GSK-3beta signaling pathway in PC12 cells. Biomed. Pharmacother. 2017, 96, 1–6. [Google Scholar] [CrossRef]
  102. Silva, S.M.; Martinho, A.; Moreno, I.; Silvestre, S.; Granadeiro, L.B.; Alves, G.; Duarte, A.P.; Domingues, F.; Gallardo, E. Effects of Hypericum perforatum extract and its main bioactive compounds on the cytotoxicity and expression of CYP1A2 and CYP2D6 in hepatic cells. Life Sci. 2016, 144, 30–36. [Google Scholar] [CrossRef]
  103. Novelli, M.; Menegazzi, M.; Beffy, P.; Porozov, S.; Gregorelli, A.; Giacopelli, D.; De Tata, V.; Masiello, P. St. John’s wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic beta cells. Int. J. Biochem. Cell Biol. 2016, 81, 92–104. [Google Scholar] [CrossRef]
  104. Nosratabadi, R.; Rastin, M.; Sankian, M.; Haghmorad, D.; Tabasi, N.; Zamani, S.; Aghaee, A.; Salehipour, Z.; Mahmoudi, M. St. John’s wort and its componenthyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells. J. Immunotoxicol. 2016, 13, 364–374. [Google Scholar] [CrossRef]
  105. Takada, H.; Furuya, K.; Sokabe, M. Mechanosensitive ATP release from hemichannels and Ca2+ influx through TRPC6 accelerate wound closure in keratinocytes. J. Cell Sci. 2014, 127, 4159–4171. [Google Scholar] [CrossRef]
  106. Novelli, M.; Beffy, P.; Menegazzi, M.; De Tata, V.; Martino, L.; Sgarbossa, A.; Porozov, S.; Pippa, A.; Masini, M.; Marchetti, P.; et al. St. John’s wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity. Acta Diabetol. 2014, 51, 113–121. [Google Scholar] [CrossRef]
  107. Gibon, J.; Deloulme, J.C.; Chevallier, T.; Ladeveze, E.; Abrous, D.N.; Bouron, A. The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner. Int. J. Neuropsychoph. 2013, 16, 189–198. [Google Scholar] [CrossRef] [PubMed]
  108. Wang, Y.L.; Zhang, Y.B.; He, J.; Zhang, H.D.; Xiao, L.; Nazarali, A.; Zhang, Z.J.; Zhang, D.; Tan, Q.R.; Kong, J.M.; et al. Hyperforin promotes nnitochondrial function and development of oligodendrocytes. J. Neurochem. 2011, 119, 555–568. [Google Scholar] [CrossRef] [PubMed]
  109. Inestrosa, N.C.; Tapia-Rojas, C.; Griffith, T.N.; Carvajal, F.J.; Benito, M.J.; Rivera-Dictter, A.; Alvarez, A.R.; Serrano, F.G.; Hancke, J.L.; Burgos, P.V.; et al. Tetrahydrohyperforin prevents cognitive deficit, A beta deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1 Delta E9 model of Alzheimer’s disease: A possible effect on APP processing. Transl. Psychiat. 2011, 1, e20. [Google Scholar] [CrossRef] [PubMed]
  110. Liao, Y.; Liu, X.; Yang, J.; Lao, Y.Z.; Yang, X.W.; Li, X.N.; Zhang, J.J.; Ding, Z.J.; Xu, H.X.; Xu, G. Hypersubones A and B, New Polycyclic Acylphloroglucinols with Intriguing Adamantane Type Cores from Hypericum subsessile. Org. Lett. 2015, 17, 1172–1175. [Google Scholar] [CrossRef] [PubMed]
  111. Cao, T.-W.; Liu, X.; Yan, S.; Zhou, H.-M.; Liu, D.-W.; Xiong, W.-Y.; Xu, G. Anti-adipogenicadamantane type polycyclic polyprenylated acylphloroglucinols from Hypericum subsessile. Fitoterapia 2020, 147, 104755. [Google Scholar] [CrossRef]
  112. Zhou, H.M.; Ye, Y.S.; Jiang, N.N.; Mu, R.F.; Wang, Q.; Hu, J.; Liu, X.; Qin, W.Y.; Xu, G.; Xiong, W.Y. Adipogenesis Inhibitory Activity of Hypersampsone P from Hypericum subsessile. Nat. Prod. Bioprospect. 2020, 10, 163–170. [Google Scholar] [CrossRef]
  113. Zhou, Z.B.; Li, Z.R.; Wang, X.B.; Luo, J.G.; Kong, L.Y. Polycyclic Polyprenylated Derivatives from Hypericum uralum: Neuroprotective Effects and Antidepressant-like Activity of Uralodin A. J. Nat. Prod. 2016, 79, 1231–1240. [Google Scholar] [CrossRef]
  114. Zhang, J.J.; Yang, X.W.; Liu, X.; Ma, J.Z.; Liao, Y.; Xu, G. 1,9-seco-Bicyclic Polyprenylated Acylphloroglucinols from Hypericum uralum. J. Nat. Prod. 2015, 78, 3075–3079. [Google Scholar] [CrossRef]
  115. Fang, Q.-Q.; Feng, T.-T.; Wang, A.-Z.; He, W.-Y.; Wei, R.-J.; Lu, Q.; Tan, C.-H. Structurally diverse polyprenylated acylphloroglucinols from Hypericum uralum Buch.-Ham. ex D. Don. Phytochemistry 2021, 187, 112771. [Google Scholar] [CrossRef] [PubMed]
  116. Xie, S.; Tan, X.; Liu, Y.; Duan, Y.; Chen, G.; Feng, H.; Sun, L.; Huang, Y.; Guo, Y.; Shi, Z.; et al. Hypersonins A–D, Polycyclic Polyprenylated Acylphloroglucinols with a 1,2-seco-Homoadamantane Architecture from Hypericum wilsonii. J. Nat. Prod. 2020, 83, 1804–1809. [Google Scholar] [CrossRef]
  117. Duan, Y.; Deng, Y.; Bu, P.; Guo, Y.; Shi, Z.; Cao, Y.; Zhang, Y.; Hu, H.; Hu, Z.; Qi, C.; et al. Discovery of bioactive polycyclic polyprenylated acylphloroglucinols from Hypericum wilsonii. Bioorg. Chem. 2021, 115, 105246. [Google Scholar] [CrossRef]
  118. Tanaka, N.; Tsuji, E.; Kashiwada, Y.; Kobayashi, J.i. Yezo’otogirins D–H, Acylphloroglucinols and Meroterpenes from Hypericum yezoense. Chem. Pharm. Bull. 2016, 64, 991–995. [Google Scholar] [CrossRef]
  119. Tanaka, N.; Mamemura, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J.i. Yojironins E–I, prenylated acylphloroglucinols from Hypericum yojiroanum. Bioorg. Med. Chem. Lett. 2011, 21, 5393–5397. [Google Scholar] [CrossRef] [PubMed]
  120. Mamemura, T.; Tanaka, N.; Shibazaki, A.; Gonoi, T.; Kobayashi, J. Yojironins A–D, meroterpenoids and prenylated acylphloroglucinols from Hypericum yojiroanum. Tetrahedron. Lett. 2011, 52, 3575–3578. [Google Scholar] [CrossRef]
  121. Ye, Y.S.; Li, W.Y.; Du, S.Z.; Yang, J.; Nian, Y.; Xu, G. Congenetic Hybrids Derived from Dearomatized Isoprenylated Acylphloroglucinol with Opposite Effects on Cav3.1 Low Voltage-Gated Ca(2+) Channel. J. Med. Chem. 2020, 63, 1709–1716. [Google Scholar] [CrossRef]
  122. Jia, X.Y.; Wu, Y.M.; Lei, C.; Yu, Y.Y.; Li, J.Q.; Li, J.Y.; Hou, A.J. Hyperinoids A and B, two polycyclic meroterpenoids from Hypericum patulum. Chin. Chem. Lett. 2020, 31, 1263–1266. [Google Scholar] [CrossRef]
  123. Hao, J.; Zhou, T.; Ma, Y.; Deng, J.; Cheng, H.; Wang, Q.; Lin, Q.; Yang, X.; Choi, H. New Polyprenylated Acylphloroglucinol Derivatives and Xanthones From Hypericum wilsonii. Front. Chem. 2021, 9, 717904. [Google Scholar] [CrossRef] [PubMed]
  124. Ma, J.; Xia, G.Y.; Zang, Y.D.; Li, C.J.; Yang, J.B.; Huang, J.W.; Zhang, J.J.; Su, Y.L.; Wang, A.G.; Zhang, D.M. Three new decarbonyl prenylphloroglucinols bearing unusual spirost subunits from Hypericum scabrum and their neuronal activities. Chin. Chem. Lett. 2021, 32, 1173–1176. [Google Scholar] [CrossRef]
  125. Xie, S.S.; Zhou, Y.; Tan, X.S.; Sun, W.G.; Duan, Y.L.; Feng, H.; Sun, L.J.; Guo, Y.; Shi, Z.Y.; Hao, X.C.; et al. Norwilsonnol A, an immunosuppressive polycyclic polyprenylated acylphloroglucinol with a spiro[5-oxatricyclo[6.4.0.0(3,7)]dodecane-6’,1-1’,2’-dioxane] system from Hypericum wilsonii. Org. Chem. Front. 2021, 8, 2280–2286. [Google Scholar] [CrossRef]
  126. Zeng, Y.R.; Li, Y.N.; Yang, J.; Yi, P.; Huang, L.; Huang, L.J.; Gu, W.; Hu, Z.X.; Li, Y.M.; Yuan, C.M.; et al. Hypermonones A–I, New Polyprenylated Acylphloroglucinols from Hypericum monogynum with Multidrug Resistance Reversal Activity. Chin. J. Chem. 2021, 39, 2422–2432. [Google Scholar] [CrossRef]
  127. Zhang, S.; Zhang, J.; Yu, J.J.; Chen, X.L.; Zhang, F.Y.; Wei, W.; Zhang, L.Y.; Chen, W.M.; Lin, N.X.; Wu, Y. Hyperforin Ameliorates Imiquimod-Induced Psoriasis-Like Murine Skin Inflammation by Modulating IL-17A-Producing gamma delta T Cells. Front. Immunol. 2021, 12, 635076. [Google Scholar] [CrossRef] [PubMed]
  128. Zhang, Y.X.; Ao, Z.; He, Y.W.; Lu, J.Y.; Chen, X.L.; Kong, L.Y.; Luo, J.G. Hyperpatulones C–G, new spirocyclic polycyclic polyprenylated acylphloroglucinols from the leaves of Hypericum patulum. Fitoterapia 2021, 155, 105063. [Google Scholar] [CrossRef] [PubMed]
  129. Zhen, B.; Suo, X.Y.; Dang, J.; Yue, H.L.; Tao, Y.D.; Wang, J.J.; Li, L.; Lin, M.B.; Hou, Q.; Wang, W.P.; et al. Hyperterpenoids A and B: Two pairs of unprecedented 6/6/4/6/6 polycyclic cyclobutane meroterpenoids with potent neuroprotective and anti-inflammatory activities from Hypericum beanii. Chin. Chem. Lett. 2021, 32, 2338–2341. [Google Scholar] [CrossRef]
  130. Bridi, H.; Pustay, A.P.; Bordignon, S.A.D.; Picoli, S.U.; von Poser, G.L.; Ferraz, A.D.F. Antimicrobial activity of dimeric acylphloroglucinols isolated from southern Brazilian Hypericum species against to resistant bacterial. Nat. Prod. Res. 2022, 10, 1–5. [Google Scholar] [CrossRef]
  131. Shi, Z.; Hu, H.; Guo, Y.; Duan, Y.; Zhang, Y.; Tao, B.; Bu, P.; Sun, W.; Qi, C.; Zhang, Y. Discovery of 13,15-nor-polycyclic polyprenylated acylphloroglucinols from Hypericum longistylum with anti-inflammatory activity. Org. Biomol. Chem. 2022, 20, 1284–1291. [Google Scholar] [CrossRef]
  132. Yang, B.Y.; Qi, C.X.; Yao, Z.Y.; Lin, S.; Li, F.L.; Sun, W.G.; Hu, Z.X.; Zhang, Y.H. Hybeanones A and B, Two Highly Modified Polycyclic Polyprenylated Acylphloroglucinols from Hypericum beanii. Chin. J. Chem. 2022, 40, 53–58. [Google Scholar] [CrossRef]
  133. Li, Q.-J.; Tang, P.-F.; Zhou, X.; Lu, W.-J.; Xu, W.-J.; Luo, J.; Kong, L.-Y. Dimethylated acylphloroglucinol meroterpenoids with anti-oral-bacterial and anti-inflammatory activities from Hypericum elodeoides. Bioorg. Chem. 2020, 104, 104275. [Google Scholar] [CrossRef] [PubMed]
  134. Mahendrakumar, M.; Seeni, S.; Perinbam, K. Hypericin, an Anthraquinone Derivative of Hypericum hookerianum Wight and Arn. (Hypericaceae) of Palni Hills, South India, Exhibits Anti-Inflammatory Property in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Pharmacogn. Mag. 2018, 14, 378–382. [Google Scholar] [CrossRef]
  135. Bahmani, M.; Taherikalani, M.; Khaksarian, M.; Rafieian-Kopaei, M.; Ashrafi, B.; Nazer, M.; Soroush, S.; Abbasi, N.; Rashidipour, M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci. OA 2019, 5, FSO371. [Google Scholar] [CrossRef] [PubMed]
  136. Chen, Q.; Di, L.; Zhang, Y.; Li, N. Chemical constituents with cytotoxic and anti-inflammatory activity in Hypericum sampsonii and the antitumor potential under the view of cancer-related inflammation. J. Ethnopharmacol. 2020, 259, 112948. [Google Scholar] [CrossRef] [PubMed]
  137. Kim, H.; Kim, S.W.; Seok, K.H.; Hwang, C.W.; Ahn, J.-C.; Jin, J.-O.; Kang, H.W. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer. Photodiagnosis Photodyn. Ther. 2018, 24, 15–21. [Google Scholar] [CrossRef]
  138. Yonar, D.; Kilic Suloglu, A.; Selmanoglu, G.; Sunnetcioglu, M.M. An Electron paramagnetic resonance (EPR) spin labeling study in HT-29 Colon adenocarcinoma cells after Hypericin-mediated photodynamic therapy. BMC Mol. Cell Biol. 2019, 20, 16. [Google Scholar] [CrossRef] [PubMed]
  139. Do, M.H.; Kim, S.Y. Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction. Biomol. Ther. 2017, 25, 158–164. [Google Scholar] [CrossRef]
  140. Montoya, A.; Daza, A.; Munoz, D.; Rios, K.; Taylor, V.; Cedeno, D.; Velez, I.D.; Echeverri, F.; Robledo, S.M. Development of a novel formulation with hypericin to treat cutaneous leishmaniasis based on photodynamic therapy in in vitro and in vivo studies. Antimicrob. Agents Chemother. 2015, 59, 5804–5813. [Google Scholar] [CrossRef] [Green Version]
  141. Jendzelovska, Z.; Jendzelovsky, R.; Hilovska, L.; Koval, J.; Mikes, J.; Fedorocko, P. Single pre-treatment with hypericin, a St. John’s wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells. Toxicol. Vitr. 2014, 28, 1259–1273. [Google Scholar] [CrossRef]
  142. Cavarga, I.; Bilcik, B.; Vyboh, P.; Zaskvarova, M.; Chorvat, D.; Kasak, P.; Mlkvy, P.; Mateasik, A.; Chorvatova, A.; Miskovsky, P. Photodynamic Effect of Hypericin after Topical Application in the Ex Ovo Quail Chorioallantoic Membrane Model. Planta Med. 2014, 80, 56–62. [Google Scholar] [CrossRef] [PubMed]
  143. Galeotti, N.; Ghelardini, C. Reversal of NO-induced nociceptive hypersensitivity by St. John’s wort and hypericin: NF-kappaB, CREB and STAT1 as molecular targets. Psychopharmacology 2013, 227, 149–163. [Google Scholar] [CrossRef]
  144. Dalmizrak, O.; Kulaksiz-Erkmen, G.; Ozer, N. Evaluation of the in vitro inhibitory impact of hypericin on placental glutathione S-transferase pi. Protein J. 2012, 31, 544–549. [Google Scholar] [CrossRef]
  145. Wang, Y.; Shi, X.; Qi, Z. Hypericin prolongs action potential duration in hippocampal neurons by acting on K+ channels. Brit. J. Pharmacol. 2010, 159, 1402–1407. [Google Scholar] [CrossRef]
  146. Chang, Y.; Wang, S.J. Hypericin, the active component of St. John’s wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway. Eur. J. Pharmacol. 2010, 634, 53–61. [Google Scholar] [CrossRef]
  147. De Souza, L.M.; de Sousa, F.D.; Cruz, R.C.R.; Tavares, D.C.; Francielli de Oliveira, P. Hypericin, a medicinal compound from St. John’s Wort, inhibits genotoxicity induced by mutagenic agents in V79 cells. Drug Chem. Toxicol. 2020, 45, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
  148. Hou, X.-D.; Guan, X.-Q.; Cao, Y.-F.; Weng, Z.-M.; Hu, Q.; Liu, H.-B.; Jia, S.-N.; Zang, S.-Z.; Zhou, Q.; Yang, L.; et al. Inhibition of pancreatic lipase by the constituents in St. John’s Wort: In vitro and in silico investigations. Int. J. Biol. Macromol. 2020, 145, 620–633. [Google Scholar] [CrossRef] [PubMed]
  149. Matos, A.D.R.; Caetano, B.C.; de Almeida Filho, J.L.; Martins, J.; de Oliveira, M.G.P.; Sousa, T.D.C.; Horta, M.A.P.; Siqueira, M.M.; Fernandez, J.H. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front. Microbiol. 2022, 13, 828984. [Google Scholar] [CrossRef]
  150. Sun, Y.; Liang, C.; Zheng, L.; Liu, L.; Li, Z.; Yang, G.; Li, Y. Anti-fatigue effect of hypericin in a chronic forced exercise mouse model. J. Ethnopharmacol. 2022, 284, 114767. [Google Scholar] [CrossRef] [PubMed]
  151. Zhai, X.; Chen, Y.; Han, X.; Zhu, Y.; Li, X.; Zhang, Y.; Lu, Y. The protective effect of hypericin on postpartum depression rat model by inhibiting the NLRP3 inflammasome activation and regulating glucocorticoid metabolism. Int. Immunopharmacol. 2022, 105, 108560. [Google Scholar] [CrossRef]
  152. Nedialkov, P.T.; Zheleva-Dimitrova, D.; Momekov, G.; Karlov, K.; Girreser, U.; Kitanov, G.M. Elegaphenone and 7-epi-clusianone, the major cytotoxic constituents of Hypericum elegans. Nat. Prod. Res. 2011, 25, 1743–1750. [Google Scholar] [CrossRef]
  153. Zofou, D.; Kowa, T.K.; Wabo, H.K.; Ngemenya, M.N.; Tane, P.; Titanji, V.P. Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: A bioassay-guided fractionation of the stem bark. Malar. J. 2011, 10, 167. [Google Scholar] [CrossRef]
  154. Xie, J.Y.; Jin, Q.; Gao, J.M.; Zong, S.C.; Yan, X.T. Two new benzophenone glycosides from the aerial parts of Hypericum przewalskii. Nat. Prod. Res. 2020, 36, 3520–3528. [Google Scholar] [CrossRef]
  155. Zhang, Y.; Yang, Y.; Chen, Q.; Li, N. Hyperprzeone A, a new benzophenone with cytotoxicity from Hypericum przewalskii Maxim. Nat. Prod. Res. 2020, 35, 4960–4968. [Google Scholar] [CrossRef]
  156. Tian, W.-J.; Qiu, Y.-Q.; Chen, H.-F.; Jin, X.-J.; Yao, X.-J.; Dai, Y.; Yao, X.-S. Chiral separation and absolute configurations of two pairs of racemic polyprenylated benzophenones from Hypericum sampsonii. Fitoterapia 2017, 116, 39–44. [Google Scholar] [CrossRef]
  157. Huang, C.Y.; Chang, T.C.; Wu, Y.J.; Chen, Y.; Chen, J.J. Benzophenone and Benzoylphloroglucinol Derivatives from Hypericum sampsonii with Anti-Inflammatory Mechanism of Otogirinin A. Molecules 2020, 25, 4463. [Google Scholar] [CrossRef] [PubMed]
  158. Nguyen Viet, D.; Le Ba, V.; Nguyen Duy, T.; Pham Thi, V.A.; Tran Thi, H.; Le Canh, V.C.; Bach Long, G.; Kim, Y.H.; Tuan Anh, H.L. Bioactive compounds from the aerial parts of Hypericum sampsonii. Nat. Prod. Res. 2021, 35, 646–648. [Google Scholar] [CrossRef]
  159. Haas, J.S.; Viana, A.F.; Heckler, A.P.M.; von Poser, G.L.; Rates, S.M.K. The antinociceptive effect of a benzopyran (HP1) isolated from Hypericum polyanthemum in mice hot-plate test is blocked by naloxone. Planta Med. 2010, 76, 1419–1423. [Google Scholar] [CrossRef] [PubMed]
  160. Gao, W.; Hu, J.-W.; Xu, F.; Wei, C.-J.; Shi, M.-J.; Zhao, J.; Wang, J.-J.; Zhen, B.; Ji, T.-F.; Xing, J.-G.; et al. Polyisoprenylated benzoylphloroglucinol derivatives from Hypericum scabrum. Fitoterapia 2016, 115, 128–134. [Google Scholar] [CrossRef] [PubMed]
  161. Oliveira, A.I.; Pinho, C.; Fonte, P.; Sarmento, B.; Dias, A.C.P. Development, characterization, antioxidant and hepatoprotective properties of poly(epsilon-caprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. Int. J. Biol. Macromol. 2018, 110, 185–196. [Google Scholar] [CrossRef] [PubMed]
  162. Nedialkov, P.T.; Ilieva, Y.; Zheleva-Dimitrova, D.; Kokanova-Nedialkova, Z.; Momekov, G. Three new prenyloxy chromanones from aerial parts of Hypericum aucheri. Fitoterapia 2019, 139, 104421. [Google Scholar] [CrossRef] [PubMed]
  163. Qiu, D.R.; Zhou, M.; Liu, X.Z.; Chen, J.J.; Wang, G.H.; Lin, T.; Yu, F.R.; Ding, R.; Sun, C.L.; Tian, W.J.; et al. Cytotoxic polyprenylated phloroglucinol derivatives from Hypericum elodeoides Choisy modulating the transactivation of RXRalpha. Bioorg. Chem. 2021, 107, 104578. [Google Scholar] [CrossRef]
  164. Yan, X.-T.; An, Z.; Huangfu, Y.; Zhang, Y.-T.; Li, C.-H.; Chen, X.; Liu, P.-L.; Gao, J.-M. Polycyclic polyprenylated acylphloroglucinol and phenolic metabolites from the aerial parts of Hypericum elatoides and their neuroprotective and anti-neuroinflammatory activities. Phytochemistry 2019, 159, 65–74. [Google Scholar] [CrossRef]
  165. Win, T.; Htwe, T.T.; Shwe, H.H.; Heilmann, J. Lavandulyl flavanones from the stems of Hypericum calycinum L. Chem. Biodivers. 2012, 9, 1198–1204. [Google Scholar] [CrossRef]
  166. Esposito, F.; Sanna, C.; Del Vecchio, C.; Cannas, V.; Venditti, A.; Corona, A.; Bianco, A.; Serrilli, A.M.; Guarcini, L.; Parolin, C.; et al. Hypericum hircinum L. components as new single-molecule inhibitors of both HIV-1 reverse transcriptase-associated DNA polymerase and ribonuclease H activities. Pathog. Dis. 2013, 68, 116–124. [Google Scholar] [CrossRef]
  167. Sajid, A.; Ahmed, E.; Sharif, A.; Arshed, F.; Arshad, M.; Sher, M.; Sajid, A.; Amanat, S. Bioassay Directed Isolation Studies on Hypericum oblongifolium. J. Chem. Soc. Pak. 2018, 40, 249–254. [Google Scholar]
  168. Wu, F.S.; Hung, C.J.; Lin, C.L.; Huang, H.Y.; Kuo, Y.H.; Chang, T.H.; Chen, C.L.; Sung, P.J.; Cheng, M.J.; Kuo, C.W.; et al. A New Benzophenone and Bioactive Constituents of Hypericum nokoense. Chem. Nat. Compd. 2021, 57, 645–649. [Google Scholar] [CrossRef]
  169. An, J.; Zuo, G.Y.; Hao, X.Y.; Wang, G.C.; Li, Z.S. Antibacterial and synergy of a flavanonol rhamnoside with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2011, 18, 990–993. [Google Scholar] [CrossRef] [PubMed]
  170. Larit, F.; Elokely, K.M.; Nael, M.A.; Benyahia, S.; Leon, F.; Cutler, S.J.; Ghoneim, M.M. Proposed Mechanism for the Antitrypanosomal Activity of Quercetin and Myricetin Isolated from Hypericum afrum Lam.: Phytochemistry, In Vitro Testing and Modeling Studies. Molecules 2021, 26, 1009. [Google Scholar] [CrossRef] [PubMed]
  171. Jin, D.X.; He, J.F.; Zhang, K.Q.; Luo, X.G.; Zhang, T.C. alpha-Glucosidase Inhibition Action of Major Flavonoids Identified from Hypericum Attenuatum Choisy and Their Synergistic Effects. Chem. Biodivers. 2021, 18, e2100244. [Google Scholar] [CrossRef]
  172. Feng, S.L.; Zhang, J.; Jin, H.; Zhu, W.T.; Yuan, Z. A Network Pharmacology Study of the Molecular Mechanisms of Hypericum japonicum in the Treatment of Cholestatic Hepatitis with Validation in an Alpha-Naphthylisothiocyanate (ANIT) Hepatotoxicity Rat Model. Med. Sci. Monit. 2021, 27, e928402. [Google Scholar] [CrossRef]
  173. Farooq, U.; Khan, T.; Shah, S.A.; Hossain, M.S.; Ali, Y.; Ullah, R.; Raziq, N.; Shahid, M.; Capasso, R. Isolation, Characterization and Neuroprotective Activity of Folecitin: An In Vivo Study. Life 2021, 11, 825. [Google Scholar] [CrossRef]
  174. Duan, J.Y.; Chen, W.; Zhao, Y.Q.; He, L.L.; Li, E.C.; Bai, Z.H.; Wang, Y.J.; Zhang, C.P. Flavonoids from Hypericum patulum enhance glucose consumption and attenuate lipid accumulation in HepG2 cells. J. Food Biochem. 2021, 45, e13898. [Google Scholar] [CrossRef]
  175. Sun, S.; Yan, Z.; Shui, X.; Qi, W.; Chen, Y.; Xu, X.; Hu, Y.; Guo, W.; Shang, P. Astilbin prevents osteoarthritis development through the TLR4/MD-2 pathway. J. Cell Mol. Med. 2020, 24, 13104–13114. [Google Scholar] [CrossRef]
  176. Xing, H.; Fu, R.; Cheng, C.; Cai, Y.; Wang, X.; Deng, D.; Gong, X.; Chen, J. Hyperoside Protected Against Oxidative Stress-Induced Liver Injury via the PHLPP2-AKT-GSK-3beta Signaling Pathway In Vivo and In Vitro. Front. Pharmacol. 2020, 11, 1065. [Google Scholar] [CrossRef]
  177. Hu, Z.; Zhao, P.; Xu, H. Hyperoside exhibits anticancer activity in non-small cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncol. Rep. 2020, 43, 617–624. [Google Scholar] [CrossRef] [PubMed]
  178. Sevastre-Berghian, A.C.; Toma, V.A.; Sevastre, B.; Benedec, D.; Oniga, I.; Filip, L.; Baldea, I.; Suciu, S.; Popovici, C.P.; Lucaciu, R.L.; et al. Hypericum Sp. Extracts Improve Anxiety-Like Behaviour and Influence Cerebral Hmox1 Expression in a Rat Model of Fg-7142-Induced Anxiety. Farmacia 2021, 69, 1080–1088. [Google Scholar] [CrossRef]
  179. Li, Y.N.; Zeng, Y.R.; Yang, J.; He, W.; Chen, J.; Deng, L.; Yi, P.; Huang, L.J.; Gu, W.; Hu, Z.X.; et al. Chemical constituents from the flowers of Hypericum monogynum L. with COX-2 inhibitory activity. Phytochemistry 2022, 193, 112970. [Google Scholar] [CrossRef] [PubMed]
  180. Huang, J.; Zhou, L.; Chen, J.L.; Chen, T.B.; Lei, B.; Zheng, N.D.; Wan, X.Q.; Xu, J.G.; Wang, T.H. Hyperoside Attenuate Inflammation in HT22 Cells via Upregulating SIRT1 to Activities Wnt/beta-Catenin and Sonic Hedgehog Pathways. Neural Plast. 2021, 2021, 8706400. [Google Scholar] [CrossRef] [PubMed]
  181. Lin, C.; Wu, M.H.; Dong, J.Y. Quercetin-4 ‘-O-beta-D-glucopyranoside (QODG) Inhibits Angiogenesis by Suppressing VEGFR2-Mediated Signaling in Zebrafish and Endothelial Cells. PLoS ONE 2012, 7, e31708. [Google Scholar] [CrossRef] [Green Version]
  182. Haas, J.S.; Stolz, E.D.; Betti, A.H.; Stein, A.C.; Schripsema, J.; von Poser, G.L.; Rates, S.M.K. The anti-immobility effect of hyperoside on the forced swimming test in rats is mediated by the D2-like receptors activation. Planta Med. 2011, 77, 334–339. [Google Scholar] [CrossRef]
  183. Huang, Z.-Q.; Chen, P.; Su, W.-W.; Wang, Y.-G.; Wu, H.; Peng, W.; Li, P.-B. Antioxidant Activity and Hepatoprotective Potential of Quercetin 7-Rhamnoside In Vitro and In Vivo. Molecules 2018, 23, 1188. [Google Scholar] [CrossRef]
  184. Liang, S.; Su, W.-W.; Wang, Y.-G.; Peng, W.; Nie, Y.-C.; Li, P.-B. Effect of quercetin 7-rhamnoside on glycochenodeoxycholic acid-induced L-02 human normal liver cell apoptosis. Int. J. Mol. Med. 2013, 32, 323–330. [Google Scholar] [CrossRef]
  185. Quispe, Y.N.G.; Hwang, S.H.; Wang, Z.Q.; Lim, S.S. Screening of Peruvian Medicinal Plants for Tyrosinase Inhibitory Properties: Identification of Tyrosinase Inhibitors in Hypericum laricifolium Juss. Molecules 2017, 22, 402. [Google Scholar] [CrossRef]
  186. Fu, T.; Wang, L.; Jin, X.-n.; Sui, H.-j.; Liu, Z.; Jin, Y. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin. 2016, 37, 505–518. [Google Scholar] [CrossRef]
  187. Kong, Y.; Sun, W.; Wu, P. Hyperoside exerts potent anticancer activity in skin cancer. Front. Biosci. (Landmark Ed.) 2020, 25, 463–479. [Google Scholar] [PubMed]
  188. Cao, J.; Tang, C.; Gao, M.; Rui, Y.; Zhang, J.; Wang, L.; Wang, Y.; Xu, B.; Yan, B.C. Hyperoside alleviates epilepsy-induced neuronal damage by enhancing antioxidant levels and reducing autophagy. J. Ethnopharmacol. 2020, 257, 112884. [Google Scholar] [CrossRef]
  189. Kolarevic, A.; Pavlovic, A.; Djordjevic, A.; Lazarevic, J.; Savic, S.; Kocic, G.; Anderluh, M.; Smelcerovic, A. Rutin as Deoxyribonuclease I Inhibitor. Chem. Biodivers. 2019, 16, e1900069. [Google Scholar] [CrossRef] [PubMed]
  190. Yang, Y.; Tantai, J.C.; Sun, Y.F.; Zhong, C.X.; Li, Z.G. Effect of hyperoside on the apoptosis of A549 human non-small cell lung cancer cells and the underlying mechanism. Mol. Med. Rep. 2017, 16, 6483–6488. [Google Scholar] [CrossRef]
  191. Verjee, S.; Kelber, O.; Kolb, C.; Abdel-Aziz, H.; Butterweck, V. Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix. J. Pharm. Pharmacol. 2017, 71, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  192. Gong, Y.L.; Yang, Y.H.; Chen, X.Q.; Yang, M.; Huang, D.; Yang, R.; Zhou, L.Y.; Li, C.L.; Xiong, Q.J.; Xiong, Z. Hyperoside protects against chronic mild stress-induced learning and memory deficits. Biomed. Pharmacother. 2017, 91, 831–840. [Google Scholar] [CrossRef]
  193. Liu, Y.-H.; Liu, G.-H.; Mei, J.-J.; Wang, J. The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway. Biomed. Pharmacother. 2016, 83, 381–391. [Google Scholar] [CrossRef]
  194. Jin, X.-N.; Yan, E.-Z.; Wang, H.-M.; Sui, H.-J.; Liu, Z.; Gao, W.; Jin, Y. Hyperoside exerts anti-inflammatory and anti-arthritic effects in LPS-stimulated human fibroblast-like synoviocytes in vitro and in mice with collagen-induced arthritis. Acta Pharmacol. Sin. 2016, 37, 674–686. [Google Scholar] [CrossRef] [PubMed]
  195. Ku, S.K.; Kwak, S.; Kwon, O.J.; Bae, J.S. Hyperoside inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation 2014, 37, 1389–1400. [Google Scholar] [CrossRef]
  196. Karuppagounder, S.S.; Madathil, S.K.; Pandey, M.; Haobam, R.; Rajamma, U.; Mohanakumar, K.P. Quercetin up-Regulates Mitochondrial Complex-I Activity to Protect against Programmed Cell Death in Rotenone Model of Parkinson’s Disease in Rats. Neuroscience 2013, 236, 136–148. [Google Scholar] [CrossRef]
  197. Zeng, K.W.; Wang, X.M.; Ko, H.; Kwon, H.C.; Cha, J.W.; Yang, H.O. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid beta-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur. J. Pharmacol. 2011, 672, 45–55. [Google Scholar] [CrossRef] [PubMed]
  198. Kim, Y.; Narayanan, S.; Chang, K.O. Inhibition of influenza virus replication by plant-derived isoquercetin. Antivir. Res. 2010, 88, 227–235. [Google Scholar] [CrossRef]
  199. Demgne, O.M.F.; Damen, F.; Fankam, A.G.; Guefack, M.F.; Wamba, B.E.N.; Nayim, P.; Mbaveng, A.T.; Bitchagno, G.T.M.; Tapondjou, L.A.; Penlap, V.B.; et al. Botanicals and phytochemicals from the bark of Hypericum roeperianum (Hypericaceae) had strong antibacterial activity and showed synergistic effects with antibiotics against multidrug-resistant bacteria expressing active efflux pumps. J. Ethnopharmacol. 2021, 277, 114257. [Google Scholar] [CrossRef]
  200. Takada, H.; Yonekawa, J.; Matsumoto, M.; Furuya, K.; Sokabe, M. Hyperforin/HP-beta-Cyclodextrin Enhances Mechanosensitive Ca2+ Signaling in HaCaT Keratinocytes and in Atopic Skin Ex Vivo Which Accelerates Wound Healing. Biomed. Res. Int. 2017, 2017, 8701801. [Google Scholar] [CrossRef]
  201. Li, D.; Du, G.; Gong, X.; Guo, J.; Zhang, J.; Chen, C.; Xue, Y.; Zhu, H.; Zhang, Y. Hyperattenins L and M, two new polyprenylated acylphloroglucinols with adamantyl and homoadamantyl core structures from Hypericum attenuatum. Fitoterapia 2018, 125, 130–134. [Google Scholar] [CrossRef]
  202. Cao, X.; Yang, X.; Wang, P.; Liang, Y.; Liu, F.; Tuerhong, M.; Jin, D.Q.; Xu, J.; Lee, D.; Ohizumi, Y.; et al. Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum: Structures, PTP1B inhibitory activities, and interactions with PTP1B. Bioorg. Chem. 2017, 75, 139–148. [Google Scholar] [CrossRef] [PubMed]
  203. Nedialkov, P.T.; Momekov, G.; Kokanova-Nedialkova, Z.K.; Heilmann, J. Polyprenylated Phloroglucinols from Hypericum maculatum. Nat. Prod. Commun. 2015, 10, 1231–1235. [Google Scholar] [CrossRef] [PubMed]
  204. Cheng, Y.-B.; Fazary, A.E.; Lin, Y.-C.; Lo, I.W.; Ong, S.-C.; Chen, S.-Y.; Chien, C.-T.; Lin, Y.-J.; Lin, W.-W.; Shen, Y.-C. Hyperinakin, a new anti-inflammatory phloroglucinol derivative from Hypericum nakamurai. Nat. Prod. Res. 2013, 27, 727–734. [Google Scholar] [CrossRef]
  205. Abdallah, H.M.; Timraz, N.Z.; Ibrahim, S.R.M.; El-Halawany, A.M.; Malebari, A.M.; Shehata, I.A.; El-Bassossy, H.M. Nitric-Oxide-Mediated Vasodilation of Bioactive Compounds Isolated from Hypericum revolutum in Rat Aorta. Biology 2021, 10, 541. [Google Scholar] [CrossRef]
  206. Menezes, C.B.; Rigo, G.V.; Bridi, H.; Trentin, D.d.S.; Macedo, A.J.; von Poser, G.L.; Tasca, T. The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem. Biol. Drug Des. 2017, 90, 811–819. [Google Scholar] [CrossRef]
  207. Muatsumoto, T.; Imahori, D.; Ohnishi, E.; Okayama, M.; Kitagawa, T.; Ohta, T.; Yoshida, T.; Kojima, N.; Yamashita, M.; Watanabe, T. Chemical structures and induction of cell death via heat shock protein inhibition of the prenylated phloroglucinol derivatives isolated from Hypericum erectum. Fitoterapia 2022, 156, 105097. [Google Scholar] [CrossRef] [PubMed]
  208. Zhang, S.; Yin, J.; Li, X.; Zhang, J.; Yue, R.; Diao, Y.; Li, H.; Wang, H.; Shan, L.; Zhang, W. Jacarelhyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins. BMC Cancer 2014, 14, 689. [Google Scholar] [CrossRef]
  209. Tanaka, N.; Yano, Y.; Tatano, Y.; Kashiwada, Y. Hypatulins A and B, Meroterpenes from Hypericum patulum. Org Lett 2016, 18, 5360–5363. [Google Scholar] [CrossRef]
  210. Niwa, K.; Tanaka, N.; Shimomoto, Y.; Tsuji, D.; Kim, S.Y.; Kojoma, M.; Itoh, K.; Chen, C.H.; Lee, K.H.; Kashiwada, Y. Hyperdioxanes, dibenzo-1,4-dioxane derivatives from the roots of Hypericum ascyron. J. Nat. Med. 2021, 75, 907–914. [Google Scholar] [CrossRef] [PubMed]
  211. Wang, K.; Wang, Y.Y.; Gao, X.; Chen, X.Q.; Peng, L.Y.; Li, Y.; Xu, G.; Zhao, Q.S. Polycyclic polyprenylated acylphloroglucinols and cytotoxic constituents of Hypericum androsaemum. Chem. Biodivers. 2012, 9, 1213–1220. [Google Scholar] [CrossRef]
  212. Guefack, M.F.; Damen, F.; Mbaveng, A.T.; Tankeo, S.B.; Bitchagno, G.T.M.; Celik, I.; Simo Mpetga, J.D.; Kuete, V. Cytotoxic Constituents of the Bark of Hypericum roeperianum towards Multidrug-Resistant Cancer Cells. Evid.-Based Complement. Altern. Med. 2020, 2020, 4314807. [Google Scholar] [CrossRef] [PubMed]
  213. Yan, S.; Feng, H.; Sun, L.; Shi, Z.; Hu, H.; Duan, Y.; Guo, Y.; Tan, X.; Chen, G.; Qi, C.; et al. Discovery of immunosuppressive Lupane-type Triterpenoids from Hypericum longistylum. Nat. Prod. Res. 2022, 36, 4394–4400. [Google Scholar] [CrossRef] [PubMed]
  214. Darbinian, N.; Khalili, K.; Amini, S. Neuroprotective activity of pDING in response to HIV-1 Tat. J. Cell Physiol. 2014, 229, 153–161. [Google Scholar] [CrossRef] [PubMed]
  215. Moon, H.-I.; Lee, Y.-C.; Lee, J.-H. Phenol glycosides with in vitro anti-Helicobacter pylori activity from Hypericum erectum Thunb. Phytother. Res. 2011, 25, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
  216. Hu, L.Z.; Zhu, H.C.; Li, L.; Huang, J.F.; Sun, W.G.; Liu, J.J.; Li, H.; Luo, Z.W.; Wang, J.P.; Xue, Y.B.; et al. (±)-Japonones A and B, two pairs of new enantiomers with anti-KSHV activities from Hypericum japonicum. Sci. Rep. 2016, 6, 27588. [Google Scholar] [CrossRef]
  217. Shiu, W.K.; Malkinson, J.P.; Rahman, M.M.; Curry, J.; Stapleton, P.; Gunaratnam, M.; Neidle, S.; Mushtaq, S.; Warner, M.; Livermore, D.M.; et al. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int. J. Antimicrob. Agents 2013, 42, 513–518. [Google Scholar] [CrossRef] [PubMed]
  218. Wang, A.Z.; Fang, Q.Q.; Feng, T.T.; Wei, R.J.; Jiang, K.; Lu, Q.; Tan, C.H. Acmoxanthones A-E, New Lavandulated Xanthones from Hypericum acmosepalum N. Robson. Fitoterapia 2021, 154, 104923. [Google Scholar] [CrossRef] [PubMed]
  219. Dimitrov, M.; Nikolova, I.; Benbasat, N.; Kitanov, G.; Danchev, N. Acute Toxicity, Antidepressive and Mao Inhibitory Activity of Mangiferin Isolated from Hypericum Aucheri. Biotechnol. Biotech. Equip. 2011, 25, 2668–2671. [Google Scholar] [CrossRef]
  220. Zuo, G.-Y.; An, J.; Han, J.; Zhang, Y.-L.; Wang, G.-C.; Hao, X.-Y.; Bian, Z.-Q. Isojacareubin from the Chinese herb Hypericum japonicum: Potent antibacterial and synergistic effects on clinical methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Mol. Sci. 2012, 13, 8210–8218. [Google Scholar] [CrossRef]
  221. Mathioudaki, A.; Berzesta, A.; Kypriotakis, Z.; Skaltsa, H.; Heilmann, J. Phenolic metabolites from Hypericum kelleri Bald., an endemic species of Crete (Greece). Phytochemistry 2018, 146, 1–7. [Google Scholar] [CrossRef]
  222. Breard, D.; Viault, G.; Mezier, M.C.; Pagie, S.; Bruguiere, A.; Richomme, P.; Charreau, B.; Derbre, S. Additional Insights into Hypericum perforatum Content: Isolation, Total Synthesis, and Absolute Configuration of Hyperbiphenyls A and B from Immunomodulatory Root Extracts. J. Nat. Prod. 2018, 81, 1850–1859. [Google Scholar] [CrossRef]
  223. Tocci, N.; D’Auria, F.D.; Simonetti, G.; Panella, S.; Palamara, A.T.; Debrassi, A.; Rodrigues, C.A.; Cechinel, V.; Sciubba, F.; Pasqua, G. Bioassay-guided fractionation of extracts from Hypericum perforatum in vitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiol. Bioch. 2013, 70, 342–347. [Google Scholar] [CrossRef]
  224. Damen, F.; Demgne, O.M.F.; Bitchagno, G.T.M.; Celik, I.; Mpetga, J.D.S.; Tankeo, S.B.; Opatz, T.; Kuete, V.; Tane, P. A new polyketide from the bark of Hypericum roeperianum Schimp. (Hypericaceae). Nat. Prod. Res. 2021, 35, 2381–2387. [Google Scholar] [CrossRef]
  225. Ji, Y.; Zhang, R.; Zhang, C.; Li, X.; Negrin, A.; Yuan, C.; Kennelly, E.J.; Long, C. Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China. Molecules 2019, 24, 3568. [Google Scholar] [CrossRef]
  226. Zhao, X.; Chen, Q.; Liu, Y.; Xia, C.; Shi, J.; Zheng, M. Effect of xanthone derivatives on animal models of depression. Curr. Ther. Res. Clin. Exp. 2014, 76, 45–50. [Google Scholar] [CrossRef]
  227. Radulovic, N.S.; Gencic, M.S.; Stojanovic, N.M.; Randjelovic, P.J.; Baldovini, N.; Kurteva, V. Prenylated beta-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites. Food Chem. Toxicol. 2018, 118, 505–513. [Google Scholar] [CrossRef]
Figure 1. Data-screening methodology.
Figure 1. Data-screening methodology.
Plants 11 02509 g001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Caldeira, G.I.; Gouveia, L.P.; Serrano, R.; Silva, O.D. Hypericum Genus as a Natural Source for Biologically Active Compounds. Plants 2022, 11, 2509. https://doi.org/10.3390/plants11192509

AMA Style

Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. Plants. 2022; 11(19):2509. https://doi.org/10.3390/plants11192509

Chicago/Turabian Style

Caldeira, Gonçalo Infante, Luís Pleno Gouveia, Rita Serrano, and Olga Duarte Silva. 2022. "Hypericum Genus as a Natural Source for Biologically Active Compounds" Plants 11, no. 19: 2509. https://doi.org/10.3390/plants11192509

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop