Next Article in Journal
Common Chemical Inductors of Replication Stress: Focus on Cell‐Based Studies
Next Article in Special Issue
Mapping Post‐Transcriptional Modifications onto Transfer Ribonucleic Acid Sequences by Liquid Chromatography Tandem Mass Spectrometry
Previous Article in Journal
Effect of Reduction of Redox Modifications of Cys-Residues in the Na,K-ATPase α1-Subunit on Its Activity
Previous Article in Special Issue
Sulfur Modifications of the Wobble U34 in tRNAs and their Intracellular Localization in Eukaryotic Cells
Article Menu

Export Article

Open AccessReview
Biomolecules 2017, 7(1), 20; doi:10.3390/biom7010020

m1A Post‐Transcriptional Modification in tRNAs

Institut de Biologie Physico‐chimique (IBPC), CNRS, UMR 8261 CNRS/Université Paris Diderot, 13 rue Pierre et Marie Curie, Paris 75005, France
*
Author to whom correspondence should be addressed.
Received: 16 January 2017 / Accepted: 16 February 2017 / Published: 21 February 2017
(This article belongs to the Special Issue tRNA Modifications: Synthesis, Function and Beyond)
View Full-Text   |   Download PDF [3014 KB, uploaded 22 February 2017]   |  

Abstract

To date, about 90 post‐transcriptional modifications have been reported in tRNA expanding their chemical and functional diversity. Methylation is the most frequent post‐transcriptional tRNA modification that can occur on almost all nitrogen sites of the nucleobases, on the C5 atom of pyrimidines, on the C2 and C8 atoms of adenosine and, additionally, on the oxygen of the ribose 2′-OH. The methylation on the N1 atom of adenosine to form 1‐methyladenosine (m1A) has been identified at nucleotide position 9, 14, 22, 57, and 58 in different tRNAs. In some cases, these modifications have been shown to increase tRNA structural stability and induce correct tRNA folding. This review provides an overview of the currently known m1A modifications, the different m1A modification sites, the biological role of each modification, and the enzyme responsible for each methylation in different species. The review further describes, in detail, two enzyme families responsible for formation of m1A at nucleotide position 9 and 58 in tRNA with a focus on the tRNA binding, m1A mechanism, protein domain organisation and overall structures. View Full-Text
Keywords: 1-methyladenosine; m1A; tRNA, methylation; TrmI; Trm6–Trm61; Trm10; Trmt10C 1-methyladenosine; m1A; tRNA, methylation; TrmI; Trm6–Trm61; Trm10; Trmt10C
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Oerum, S.; Dégut, C.; Barraud, P.; Tisné, C. m1A Post‐Transcriptional Modification in tRNAs. Biomolecules 2017, 7, 20.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Biomolecules EISSN 2218-273X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top