Next Article in Journal / Special Issue
Metallothioneins, Unconventional Proteins from Unconventional Animals: A Long Journey from Nematodes to Mammals
Previous Article in Journal / Special Issue
Design of Catalytically Amplified Sensors for Small Molecules
Article Menu

Export Article

Open AccessReview
Biomolecules 2014, 4(2), 419-434; https://doi.org/10.3390/biom4020419

Zinc-Binding Cysteines: Diverse Functions and Structural Motifs

Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
*
Author to whom correspondence should be addressed.
Received: 6 February 2014 / Revised: 19 March 2014 / Accepted: 20 March 2014 / Published: 17 April 2014
(This article belongs to the Special Issue Metal Binding Proteins)
Full-Text   |   PDF [2804 KB, uploaded 17 April 2014]   |  

Abstract

Cysteine residues are known to perform essential functions within proteins, including binding to various metal ions. In particular, cysteine residues can display high affinity toward zinc ions (Zn2+), and these resulting Zn2+-cysteine complexes are critical mediators of protein structure, catalysis and regulation. Recent advances in both experimental and theoretical platforms have accelerated the identification and functional characterization of Zn2+-bound cysteines. Zn2+-cysteine complexes have been observed across diverse protein classes and are known to facilitate a variety of cellular processes. Here, we highlight the structural characteristics and diverse functional roles of Zn2+-cysteine complexes in proteins and describe structural, computational and chemical proteomic technologies that have enabled the global discovery of novel Zn2+-binding cysteines. View Full-Text
Keywords: zinc; cysteine; zinc-cysteine complexes; zinc fingers; zinc inhibition; regulatory zinc zinc; cysteine; zinc-cysteine complexes; zinc fingers; zinc inhibition; regulatory zinc
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Pace, N.J.; Weerapana, E. Zinc-Binding Cysteines: Diverse Functions and Structural Motifs. Biomolecules 2014, 4, 419-434.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Biomolecules EISSN 2218-273X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top