Rayleigh and Raman Scattering from Alkali Atoms
Abstract
:1. Introduction
2. Theory
2.1. Photon-Atom Scattering
2.2. Quasi One-Electron Atomic Structure
3. Calculation Methods
3.1. Principal Value Approach
3.2. Complex Scaling Method
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
KHW | Kramers-Heisenberg-Waller |
PV | Principal value |
CS | Complex scaling |
LANL | Los Alamos National Lab |
References
- Kramers, H.A.; Heisenberg, W. Über die Streuung von Strahlung durch Atome. Z. Phys. 1925, 31, 681–708. [Google Scholar] [CrossRef]
- Waller, I. Die Streuung kurzwelliger Strahlung durch Atome nach der Diracschen Strahlungstheorie. Z. Phys. 1929, 58, 75–94. [Google Scholar] [CrossRef]
- Sampson, D.H. The Opacity at High Temperatures due to Compton Scattering. Astrophys. J. 1959, 129, 734. [Google Scholar] [CrossRef]
- Huebner, W.F.; Barfield, W.D. Opacity; Springer: New York, NY, USA, 2014. [Google Scholar]
- Colgan, J.; Kilcrease, D.P.; Magee, N.H.; Sherrill, M.E.; Abdallah, J., Jr.; Hakel, P.; Fontes, C.J.; Guzik, J.A.; Mussack, K.A. A new generation of los alamos opacity tables. Astrophys. J. 2016, 817, 116. [Google Scholar] [CrossRef]
- Ferraro, J.H.; Nakamoto, K.; Brown, C.W. Introductory Raman Spectroscopy; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Lloyd, S. Enhanced Sensitivity of Photodetection via Quantum Illumination. Science 2008, 321, 1463–1465. [Google Scholar] [CrossRef] [Green Version]
- Lanzagota, M. Quantum Radar; Morgan & Claypool: San Rafael, CA, USA, 2012. [Google Scholar]
- Gavrila, M. Elastic Scattering of Photons by a Hydrogen Atom. Phys. Rev. 1967, 163, 147–155. [Google Scholar] [CrossRef]
- Saslow, W.M.; Mills, D.L. Raman Scattering by Hydrogenic Systems. Phys. Rev. 1969, 187, 1025–1034. [Google Scholar] [CrossRef]
- Dalgarno, A.; Lewis, J.T. The Exact Calculation of Long-Range Forces between Atoms by Perturbation Theory. Proc. R. Soc. Lond. Ser. 1955, 233, 70–74. [Google Scholar] [CrossRef]
- Sadeghpour, H.R.; Dalgarno, A. Rayleigh and Raman scattering by hydrogen and caesium. J. Phys. At. Mol. Opt. Phys. 1992, 25, 4801–4809. [Google Scholar] [CrossRef] [Green Version]
- Delserieys, A.; Khattak, F.Y.; Sahoo, S.; Gribakin, G.F.; Lewis, C.L.S.; Riley, D. Raman satellites in optical scattering from a laser-ablated Mg plume. Phys. Rev. A 2008, 78, 055404. [Google Scholar] [CrossRef] [Green Version]
- Drühl, K. Cross section and hyperfine structure of the atomic iodine (2P12-2P32) Raman transition. Phys. Rev. A 1982, 26, 863–868. [Google Scholar] [CrossRef]
- Grunefeld, S.J. A Pseudostate Method for Computing Photon-Atom Scattering Cross-Sections. Ph.D. Thesis, The University of Queensland, Brisbane, QLD, Australia, 2017. [Google Scholar]
- McNamara, K.; Fursa, D.V.; Bray, I. Efficient calculation of Rayleigh and Raman scattering. Phys. Rev. A 2018, 98, 043435. [Google Scholar] [CrossRef] [Green Version]
- Balslev, E.; Combes, J.M. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Commun. Math. Phys. 1971, 22, 280–294. [Google Scholar] [CrossRef]
- Simon, B. Quadratic form techniques and the Balslev-Combes theorem. Commun. Math. Phys. 1972, 27, 1–9. [Google Scholar] [CrossRef]
- Rescigno, T.N.; McKoy, V. Rigorous method for computing photoabsorption cross sections from a basis-set expansion. Phys. Rev. A 1975, 12, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, J. Advanced Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1967. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Relativistic Quantum Theory; Course of Theoretical Physics; Pergamon Press: London, UK, 1965. [Google Scholar]
- Clementi, E.; Roetti, C. Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z ≤ 54. At. Data Nucl. Data Tables 1974, 14, 177–478. [Google Scholar] [CrossRef]
- McLean, A.; McLean, R. Roothaan-Hartree-Fock atomic wave functions Slater basis-set expansions for Z = 55–92. At. Data Nucl. Data Tables 1981, 26, 197–381. [Google Scholar] [CrossRef]
- Furness, J.B.; McCarthy, I.E. Semiphenomenological optical model for electron scattering on atoms. J. Phys. At. Mol. Phys. 1973, 6, 2280–2291. [Google Scholar] [CrossRef]
- Albright, B.J.; Bartschat, K.; Flicek, P.R. Core potentials for quasi-one-electron systems. J. Phys. At. Mol. Opt. Phys. 1993, 26, 337–344. [Google Scholar] [CrossRef]
- Norcross, D.W. Application of Scattering Theory to the Calculation of Alkali Negative-Ion Bound States. Phys. Rev. Lett. 1974, 32, 192–195. [Google Scholar] [CrossRef]
- Mitroy, J.; Griffin, D.C.; Norcross, D.W.; Pindzola, M.S. Electron-impact excitation of the resonance transition in Ca+. Phys. Rev. A 1988, 38, 3339–3350. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Herzenberg, A.; James, M.G. Core polarization corrections to oscillator strengths in the alkali atoms. J. Phys. At. Mol. Phys. 1968, 1, 822–830. [Google Scholar] [CrossRef]
- Lim, I.S.; Laerdahl, J.K.; Schwerdtfeger, P. Fully relativistic coupled-cluster static dipole polarizabilities of the positively charged alkali ions from Li+ to 119+. J. Chem. Phys. 2002, 116, 172–178. [Google Scholar] [CrossRef]
- Bray, I.; Bartschat, K.; Stelbovics, A.T. Box-based convergent close-coupling method for solving Coulomb few-body problems. Phys. Rev. A 2003, 67, 060704. [Google Scholar] [CrossRef] [Green Version]
- Bray, I.; Stelbovics, A.T. Convergent close-coupling calculations of electron-hydrogen scattering. Phys. Rev. A 1992, 46, 6995–7011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, I.; Fursa, D.V.; Kheifets, A.S.; Stelbovics, A.T. Electrons and photons colliding with atoms: Development and application of the convergent close-coupling method. J. Phys. At. Mol. Opt. Phys. 2002, 35, R117–R146. [Google Scholar] [CrossRef]
- Zammit, M.C.; Fursa, D.V.; Savage, J.S.; Bray, I. Electron- and positron-molecule scattering: Development of the molecular convergent close-coupling method. J. Phys. At. Mol. Opt. Phys. 2017, 50, 123001. [Google Scholar] [CrossRef]
- Moiseyev, N.; Certain, P.; Weinhold, F. Resonance properties of complex-rotated hamiltonians. Mol. Phys. 1978, 36, 1613–1630. [Google Scholar] [CrossRef]
- Alhaidari, A.D. Relativistic extension of the complex scaling method. Phys. Rev. A 2007, 75, 042707. [Google Scholar] [CrossRef] [Green Version]
- Šeba, P. The complex scaling method for Dirac resonances. Lett. Math. Phys. 1988, 16, 51–59. [Google Scholar] [CrossRef]
- Fursa, D.V.; Bray, I. Fully Relativistic Convergent Close-Coupling Method for Excitation and Ionization Processes in Electron Collisions with Atoms and Ions. Phys. Rev. Lett. 2008, 100, 113201. [Google Scholar] [CrossRef] [PubMed]
Parameter | Lithium | Sodium | Potassium | Rubidium | Cesium |
---|---|---|---|---|---|
0.194 | 1.001 | 5.515 | 9.143 | 15.805 | |
1.132 | 1.043 | 0.617 | 1.142 | 0.974 | |
0.766 | 1.143 | 0.582 | 1.226 | 1.049 | |
0.405 | 0.716 | 0.775 | 1.108 | 1.058 | |
− | 0.399 | 0.461 | 0.591 | 0.649 | |
1.387 | 1.383 | 2.072 | 2.079 | 2.116 | |
1.274 | 1.589 | 2.133 | 2.416 | 2.637 | |
2.316 | 1.727 | 2.444 | 2.975 | 3.613 | |
− | 4.043 | 2.842 | 2.866 | 2.984 | |
0.40 | 0.83 | 0.74 | 0.84 | 0.82 | |
0.50 | 0.81 | 0.60 | − | 0.41 | |
− | − | − | 2.00 | 6.50 |
Lithium | Sodium | Potassium | Rubidium | Cesium | |
---|---|---|---|---|---|
(a.u.) | 1.50 | 0.65 | 0.30 | 0.28 | 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singor, A.; Fursa, D.; McNamara, K.; Bray, I. Rayleigh and Raman Scattering from Alkali Atoms. Atoms 2020, 8, 57. https://doi.org/10.3390/atoms8030057
Singor A, Fursa D, McNamara K, Bray I. Rayleigh and Raman Scattering from Alkali Atoms. Atoms. 2020; 8(3):57. https://doi.org/10.3390/atoms8030057
Chicago/Turabian StyleSingor, Adam, Dmitry Fursa, Keegan McNamara, and Igor Bray. 2020. "Rayleigh and Raman Scattering from Alkali Atoms" Atoms 8, no. 3: 57. https://doi.org/10.3390/atoms8030057