Metal Body Burden as Cardiovascular Risk Factor in Adults with Metabolic Syndrome and Overweight–Obesity Analysed with an Artificial Neural Network: The Role of Hair Mineralograms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometrics and Lab Tests
2.3. Indexes
2.4. Hair Analisys
2.5. ANN Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Auto-CM
Appendix A.2. Minimum Spanning Tree
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Air Quality in Europe—2015 Report. EEA Report No 5/2015. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2015 (accessed on 22 February 2023).
- Giorgini, P.; Di Giosia, P.; Grassi, D.; Rubenfire, M.; Brook, R.D.; Ferri, C. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature. Curr. Pharm. Des. 2015, 22, 28–51. [Google Scholar] [CrossRef]
- Furlong, M.A.; Klimentidis, Y.C. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. Environ. Res. 2020, 185, 109364. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-C.; Cavallari, J.M.; Stone, P.H.; Christiani, D.C. Obesity Is A Modifier of Autonomic Cardiac Responses to Fine Metal Particulates. Environ. Health Perspect. 2007, 115, 1002–1006. [Google Scholar] [CrossRef]
- Dubowsky, S.D.; Suh, H.; Schwartz, J.; Coull, B.A.; Gold, D.R. Diabetes, Obesity, and Hypertension May Enhance Associations between AirPollution and Markers of Systemic Inflammation. Environ. Health Perspect. 2006, 114, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Bennett, W.D.; Zeman, K.L. Effect of body size on breathing pattern and fine-particle deposition in children. J. Appl. Physiol. 2004, 97, 821–826. [Google Scholar] [CrossRef]
- Al Khathlan, N.; Salem, A.M. The Effect of Adiposity Markers on Fractional Exhaled Nitric Oxide (FeNO) and Pulmonary Function Measurements. Int. J. Gen. Med. 2020, 13, 955–962. [Google Scholar] [CrossRef]
- Buscema, M.; Helgason, C.; Grossi, E. Auto contractive maps, H function and maximally regular graph: Theory and applications. In Proceedings of the Special Session on “Artificial Adaptive Systems in Medicine: Applications in the Real World, Proceedings of the NAFIPS 2008 (IEEE), New York, NY, USA, 19–22 May 2008. [Google Scholar]
- Buscema, M.; Grossi, E. The semantic connectivity map: An adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease. Int. J. Data Min. Bioinform. 2008, 2, 362–404. [Google Scholar] [CrossRef]
- Rubino, F.; Puhl, R.M.; Cummings, D.E.; Eckel, R.H.; Ryan, D.H.; Mechanick, J.I.; Nadglowski, J.; Ramos Salas, X.; Schauer, P.R.; Twenefour, D.; et al. Joint international consensus statement for ending stigma of obesity. Nat. Med. 2020, 26, 485–497. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Wilson, P.W.; Larson, M.G.; Beiser, A.; Leip, E.P.; D’Agostino, R.B.; Levy, D. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am. J. Cardiol. 2004, 94, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Donfrancesco, C.; Palmieri, L.; Cooney, M.T.; Vanuzzo, D.; Panico, S.; Cesana, G.; Ferrario, M.M.; Pilotto, L.; Graham, I.M.; Giampaoli, S. Italian cardiovascular mortality charts of the CUORE project: Are they comparable with the SCORE charts? Eur. J. Prev. Cardiol. 2010, 17, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Vigna, L.; Tirelli, A.S.; Gaggini, M.; Di Piazza, S.; Tomaino, L.; Turolo, S.; Moroncini, G.; Chatzianagnostou, K.; Bamonti, F.; Vassalle, C. Insulin resistance and cardiometabolic indexes: Comparison of concordance in working-age subjects with overweight and obesity. Endocrine 2022, 77, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Vigna, L.; Cassinelli, L.; Tirelli, A.S.; Felicetta, I.; Napolitano, F.; Tomaino, L.; Mutti, M.; Barberi, C.E.; Riboldi, L. 25(OH)D Levels in Relation to Gender, Overweight, Insulin Resistance, and Inflammation in a Cross-Sectional Cohort of Northern Italian Workers: Evidence in Support of Preventive Health Care Programs. J. Am. Coll. Nutr. 2017, 36, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction. Int. J. Endocrinol. 2014, 2014, 730827. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Hair Elements. Available online: https://www.doctorsdata.com/Hair-Elements (accessed on 12 December 2022).
- Cossellu, G.; Motta, V.; Dioni, L.; Angelici, L.; Vigna, L.; Farronato, G.; Pesatori, A.C.; Bollati, V. Titanium and Zirconium Levels Are Associated with Changes in MicroRNAs Expression: Results from a Human Cross-Sectional Study on Obese Population. PLoS ONE 2016, 11, e0161916. [Google Scholar] [CrossRef]
- Vigna, L.; Brunani, A.; Brugnera, A.; Grossi, E.; Compare, A.; Tirelli, A.S.; Conti, D.M.; Agnelli, G.M.; Andersen, L.L.; Buscema, M.; et al. Determinants of metabolic syndrome in obese workers: Gender differences in perceived job-related stress and in psychological characteristics identified using artificial neural networks. Eat. Weight. Disord. 2019, 24, 73–81. [Google Scholar] [CrossRef]
- Buscema, M.; Newman, F.; Massini, G.; Grossi, E.; Tastle, W.J.; Liu, A.K. Assessing post radiotherapy treatment involving brain volume differences in children: An application of Adaptive Systems methodology. In Data Mining Application Using Artificial Adaptive Systems; Tastle, W.J., Ed.; Springer Science-Business Media: New York, NY, USA, 2012; Chapter 1; pp. 1–23. [Google Scholar] [CrossRef]
- Vigna, L.; Tirelli, A.S.; Grossi, E.; Turolo, S.; Tomaino, L.; Napolitano, F.; Buscema, M.; Riboldi, L. Directional Relationship Between Vitamin D Status and Prediabetes: A New Approach from Artificial Neural Network in a Cohort of Workers with Overweight-Obesity. J. Am. Coll. Nutr. 2019, 38, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry/Center for Disease Contros/USPHS Monographs on Specific Toxic Metals. Available online: https://www.atsdr.cdc.gov/emes/health_professionals/index.html (accessed on 13 December 2022).
- Solenkova, N.V.; Newman, J.D.; Berger, J.S.; Thurston, G.; Hochman, J.S.; Lamas, G.A. Metal pollutants and cardiovascular disease: Mechanisms and consequences of exposure. Am. Heart J. 2014, 168, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substance and Disease Registration (ATSDR). Minimal Risk Levels (MRLs) for Hazardous Substances. Available online: https://www.atsdr.cdc.gov/mrls/index.html (accessed on 13 December 2022).
- Qian, Y.; Li, H.; Rosenberg, A.; Li, Q.; Sarnat, J.; Papatheodorou, S.; Schwartz, J.; Liang, D.; Liu, Y.; Liu, P.; et al. Long-Term Exposure to Low-Level NO2 and Mortality among the Elderly Population in the Southeastern United States. Environ. Health Perspect. 2021, 129, 127009. [Google Scholar] [CrossRef]
- Rodrigues, J.L.; Batista, B.L.; Nunes, J.A.; Passos, C.J.; Barbosa, F. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Sci. Total Environ. 2008, 405, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Paleczny, J.; Kwaśny, M.; Dąbrowski, M.; Jankowski, P. No Association of Hair Zinc Concentration with Coronary Artery Disease Severity and No Relation with Acute Coronary Syndromes. Biomolecules 2022, 12, 862. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Shi, P.; Morris, J.S.; Spiegelman, D.; Grandjean, P.; Siscovick, D.S.; Willett, W.C.; Rimm, E.B. Mercury Exposure and Risk of Cardiovascular Disease in Two U.S. Cohorts. N. Engl. J. Med. 2011, 364, 1116–1125. [Google Scholar] [CrossRef]
- Wołowiec, P.; Michalak, I.; Chojnacka, K.; Mikulewicz, M. Hair analysis in health assessment. Clin. Chim. Acta 2013, 419, 139–171. [Google Scholar] [CrossRef] [PubMed]
- Park, S.B.; Choi, S.W.; Nam, A.Y. Hair Tissue Mineral Analysis and Metabolic Syndrome. Biol. Trace Elem. Res. 2009, 130, 218–228. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Bogdański, P.; Skrypnik, D.; Skrypnik, K.; Skalny, A.V.; Aaseth, J.; Skalnaya, M.G.; Suliburska, J. Trace Element and Mineral Levels in Serum, Hair, and Urine of Obese Women in Relation to Body Composition, Blood Pressure, Lipid Profile, and Insulin Resistance. Biomolecules 2021, 11, 689. [Google Scholar] [CrossRef]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Cantone, L.; Iodice, S.; Tarantini, L.; Albetti, B.; Restelli, I.; Vigna, L.; Bonzini, M.; Pesatori, A.C.; Bollati, V. Particulate matter exposure is associated with inflammatory gene methylation in obese subjects. Environ. Res. 2017, 152, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, Y.; Wu, Y.; Zhang, X.; Jin, C.; Huang, Z.; Wang, Y.; Wang, Z.; Kris-Etherton, P.; Wu, S.; et al. A prospective study of waist circumference trajectories and incident cardiovascular disease in China: The Kailuan Cohort Study. Am. J. Clin. Nutr. 2021, 113, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Song, D.K.; Hong, Y.S.; Sung, Y.-A.; Lee, H. Waist circumference and mortality or cardiovascular events in a general Korean population. PLoS ONE 2022, 17, e0267597. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Wareham, N.J.; Khaw, K.-T. Changes in waist circumference and risk of all-cause and CVD mortality: Results from the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) cohort study. BMC Cardiovasc. Disord. 2019, 19, 238. [Google Scholar] [CrossRef]
- Lokvencová, L.; Zvěřina, O.; Kuta, J. Different trends of Cr, Fe and Zn contents in hair between obese, overweight and normal-weight men. Central Eur. J. Public Health 2021, 29, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Skalnaya, M.G.; Skalny, A.V.; Grabeklis, A.R.; Serebryansky, E.P.; Demidov, V.A.; Tinkov, A.A. Hair Trace Elements in Overweight and Obese Adults in Association with Metabolic Parameters. Biol. Trace Element Res. 2018, 186, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Hotta, Y.; Fujino, R.; Kimura, O.; Endo, T. Essential and Non-essential Elements in Scalp Hair of Diabetics: Correlations with Glycated Hemoglobin (HbA1c). Biol. Pharm. Bull. 2018, 41, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Mooradian, A.D.; Failla, M.; Hoogwerf, B.; Maryniuk, M.; Wylie-Rosett, J. Selected Vitamins and Minerals in Diabetes. Diabetes Care 1994, 17, 464–479. [Google Scholar] [CrossRef]
- Chen, M.-D.; Lin, P.-Y.; Tsou, C.-T.; Wang, J.-J.; Lin, W.-H. Selected metals status in patients with noninsulin-dependent diabetes mellitus. Biol. Trace Elem. Res. 1995, 50, 119–124. [Google Scholar] [CrossRef]
- Kinlaw, W.B.; Levine, A.S.; Morley, J.E.; Silvis, S.E.; McClain, C.J. Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 1983, 75, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Lieberman-Cribbin, W.; Domingo-Relloso, A.; Navas-Acien, A.; Cole, S.; Haack, K.; Umans, J.; Tellez-Plaza, M.; Colicino, E.; Baccarelli, A.A.; Gao, X.; et al. Epigenetic Biomarkers of Lead Exposure and Cardiovascular Disease: Prospective Evidence in the Strong Heart Study. J. Am. Heart Assoc. 2022, 11, e026934. [Google Scholar] [CrossRef] [PubMed]
- Lener, J.; Bíbr, B. Effects of molybdenum on the organism (a review ). J. Hyg. Epidemiol. Microbiol. Immunol. 1984, 28, 405–419. [Google Scholar]
- Jin, S.; Hu, C.; Zheng, Y. Maternal serum zinc level is associated with risk of preeclampsia: A systematic review and meta-analysis. Front. Public Health 2022, 10, 968045. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Doddigarla, Z.; Parwez, I.; Ahmad, J. Correlation of serum chromium, zinc, magnesium and SOD levels with HbA1c in type 2 diabetes: A cross sectional analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2016, 10, S126–S129. [Google Scholar] [CrossRef] [PubMed]
- Vigna, L.; Vassalle, C.; Tirelli, A.S.; Gori, F.; Tomaino, L.; Sabatino, L.; Bamonti, F. Gender-related association between uric acid, homocysteine, γ-glutamyltransferase, inflammatory biomarkers and metabolic syndrome in subjects affected by obesity. Biomark. Med. 2017, 11, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Yeo, Y.H.; Cheung, R.; Ingelsson, E.; Nguyen, M.H. Fatty Liver Index and Development of Cardiovascular Disease: Findings from the UK Biobank. Dig. Dis. Sci. 2021, 66, 2092–2100. [Google Scholar] [CrossRef]
- Dennis, K.K.; Judd, S.E.; Alvarez, J.A.; Kahe, K.; Jones, D.P.; Hartman, T.J. Plant food intake is associated with lower cadmium body burden in middle-aged adults. Eur. J. Nutr. 2021, 60, 3365–3374. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, A. Factors influencing levels of trace elements in human hair. Rev. Environ. Contam. Toxicol. 2002, 175, 47–78. [Google Scholar] [PubMed]
- Buscema, M.; Grossi, E.; Snowdon, D.; Antuono, P. Auto-Contractive Maps: An Artificial Adaptive System for Data Mining. An Application to Alzheimer Disease. Curr. Alzheimer Res. 2008, 5, 481–498. [Google Scholar] [CrossRef]
- Licastro, F.; Porcellini, E.; Chiappelli, M.; Forti, P.; Buscema, M.; Ravaglia, G.; Grossi, E. Multivariable network associated with cognitive decline and dementia. Neurobiol. Aging 2010, 31, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
Unit of Measure | Mean | Standard Deviation | Minimum | Maximum | Median | |
---|---|---|---|---|---|---|
BMI | - | 32.7 | 5.7 | 27.5 | 54.7 | 32.1 |
Waist Circumference | - | 99 | 13 | 75 | 137 | 97 |
Systolic Blood Pressure | mmHg | 124 | 17 | 85 | 170 | 120 |
Diastolic Blood Pressure | mmHg | 79 | 11 | 55 | 100 | 80 |
Heart rate | bpm | 72 | 9 | 52 | 100 | 70 |
White blood cells | 10 × 109/L | 6.90 | 1.79 | 3.69 | 14.39 | 6.67 |
Red blood cells | 10 × 1012/L | 4.85 | 0.48 | 3.71 | 6.49 | 4.77 |
Haemoglobin | g/dL | 13.7 | 1.3 | 10.4 | 17.4 | 13.6 |
Haematocrit | % | 41 | 3 | 32 | 50 | 41 |
Platelets | 10 × 109/L | 248 | 59 | 72 | 414 | 247 |
Fibrinogen | mg/dL | 332 | 61 | 70 | 491 | 328 |
C-reactive protein | mg/dL | 0.51 | 0.77 | 0.03 | 4.48 | 0.25 |
Uric acid | mg/dL | 4.9 | 1.2 | 1.8 | 8.2 | 4.7 |
Creatinine | mg/dL | 0.74 | 0.13 | 0.51 | 1.16 | 0.72 |
Triglycerides | mg/dL | 109 | 47 | 43 | 279 | 98 |
Total cholesterol | mg/dL | 216 | 41 | 126 | 336 | 213 |
LDL cholesterol | mg/dL | 132 | 36 | 58 | 226 | 128 |
Homocysteine | μmol/L | 10.9 | 3.8 | 5.0 | 27.8 | 10.4 |
Glycaemia | mg/dL | 96 | 27 | 57 | 297 | 91 |
Insulin | mIU/mL | 12.50 | 6.01 | 0.40 | 32.60 | 11.90 |
Glycated haemoglobin, HbA1c | % | 5.9 | 0.7 | 4.4 | 9.5 | 5.8 |
Fatty liver index | 57.6 | 28.5 | 5.0 | 99.7 | 63.0 | |
Visceral adiposity index | 3.8 | 2.6 | 0.9 | 17.5 | 2.7 | |
Framingham risk score | 3.8 | 3.9 | 0 | 20 | 2.0 | |
CV risk “Progetto Cuore” | 4.1 | 5.5 | 0.2 | 29 | 2.1 |
Reference Interval μg/g | Mean | Standard Deviation | Minimum | Maximum | Median | ||
---|---|---|---|---|---|---|---|
Toxic metals | Aluminium (Al) | <8.0 | 7.64 | 13.12 | 0.70 | 94.00 | 4.10 |
Antimony (Sb) | <0.066 | 0.05 | 0.12 | 0.01 | 1.10 | 0.02 | |
Arsenic (As) | <0.080 | 0.04 | 0.04 | 0.01 | 0.27 | 0.03 | |
Barium (Ba) | <0.75 | 1.29 | 1.63 | 0.04 | 11.00 | 0.95 | |
Bismuth (Bi) | <2.0 | 0.06 | 0.18 | 0.00 | 1.60 | 0.02 | |
Cadmium (Cd) | <0.070 | 0.74 | 6.66 | 0.00 | 65.00 | 0.03 | |
Lead (Pb) | <1.0 | 1.59 | 3.49 | 0.04 | 29.00 | 0.59 | |
Mercury (Hg) | <0.40 | 1.64 | 1.49 | 0.09 | 7.80 | 1.20 | |
Uranium (U) | <0.060 | 0.11 | 0.12 | 0.01 | 0.63 | 0.07 | |
Nickel (Ni) | <0.20 | 0.52 | 0.82 | 0.04 | 6.20 | 0.30 | |
Silver (Ag) | <0.14 | 1.68 | 5.13 | 0.01 | 38.00 | 0.21 | |
Tin (Sn) | <0.30 | 0.86 | 1.48 | 0.02 | 7.80 | 0.28 | |
Titanium (Ti) | <0.70 | 0.74 | 0.44 | 0.24 | 2.40 | 0.59 | |
Essential and other elements | Copper (Cu) | 11–32 | 17.01 | 14.96 | 6.70 | 140.00 | 14.00 |
Zinc (Zn) | 110–190 | 176.6 | 63.7 | 61.0 | 440.0 | 170.0 | |
Manganese (Mn) | 0.08–0.50 | 0.27 | 0.37 | 0.03 | 3.20 | 0.18 | |
Chromium (Cr) | 0.40–0.70 | 0.47 | 0.10 | 0.33 | 0.94 | 0.44 | |
Vanadium (V) | 0.025–0.10 | 0.05 | 0.04 | 0.01 | 0.33 | 0.04 | |
Molybdenum (Mo) | 0.040–0.090 | 0.03 | 0.01 | 0.01 | 0.08 | 0.03 | |
Boron (B) | 0.50–3.5 | 0.97 | 0.82 | 0.07 | 4.70 | 0.68 | |
Iodine (I) | 0.25–1.3 | 1.14 | 3.06 | 0.07 | 26.00 | 0.51 | |
Lithium (Li) | 0.007–0.020 | 0.02 | 0.08 | 0.00 | 0.75 | 0.01 | |
Selenium (Se) | 0.70–1.1 | 0.94 | 2.54 | 0.21 | 25.00 | 0.62 | |
Strontium (Sr) | 0.21–2.1 | 9.70 | 8.16 | 0.16 | 35.00 | 9.20 | |
Sulphur (S) | 44,000–51,000 | 47,376 | 1955 | 43,400 | 51,400 | 47,400 | |
Cobalt (Co) | 0.004–0.020 | 0.05 | 0.09 | 0.00 | 0.49 | 0.02 | |
Iron (Fe) | 7.0–16 | 15.07 | 6.22 | 3.90 | 36.00 | 15.00 | |
Germanium (Ge) | 0.030–0.040 | 0.03 | 0.01 | 0.03 | 0.05 | 0.03 | |
Rubidium (Rb) | 0.008–0.080 | 0.08 | 0.17 | 0.00 | 1.10 | 0.02 | |
Zirconium (Zr) | 0.060–0.70 | 0.05 | 0.06 | 0.01 | 0.40 | 0.03 | |
Gold (Au) | <0.50 | 0.14 | 0.34 | 0.00 | 3.00 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigna, L.; Tirelli, A.S.; Grossi, E.; Turolo, S.; Tomaino, L. Metal Body Burden as Cardiovascular Risk Factor in Adults with Metabolic Syndrome and Overweight–Obesity Analysed with an Artificial Neural Network: The Role of Hair Mineralograms. Metabolites 2023, 13, 679. https://doi.org/10.3390/metabo13060679
Vigna L, Tirelli AS, Grossi E, Turolo S, Tomaino L. Metal Body Burden as Cardiovascular Risk Factor in Adults with Metabolic Syndrome and Overweight–Obesity Analysed with an Artificial Neural Network: The Role of Hair Mineralograms. Metabolites. 2023; 13(6):679. https://doi.org/10.3390/metabo13060679
Chicago/Turabian StyleVigna, Luisella, Amedea Silvia Tirelli, Enzo Grossi, Stefano Turolo, and Laura Tomaino. 2023. "Metal Body Burden as Cardiovascular Risk Factor in Adults with Metabolic Syndrome and Overweight–Obesity Analysed with an Artificial Neural Network: The Role of Hair Mineralograms" Metabolites 13, no. 6: 679. https://doi.org/10.3390/metabo13060679