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Abstract: In determining the so-called “body burden”, hair has been widely accepted for assessing
toxic element exposure. However, its role in assessing essential elements is controversial. This
study investigates the possible relationship between hair minerals, metabolic syndrome (MetS) and
cardiovascular (CV) risk in non-occupationally exposed subjects with overweight–obesity. Ninety-
five voluntary participants (aged 51 ± 12) were recruited in Northern Italy. Hair samples were
collected and analysed via inductively coupled plasma mass spectrometry; the total toxicity index
(TI) was calculated as well. To evaluate cardiovascular risk factors in the presence or absence of MetS,
the following factors were considered via the innovative artificial neural network (ANN) method
Auto-CM: hair mineralograms (31 elements) and 25 variables including blood pressure, anthropo-
metric parameters, insulin resistance and biochemical serum markers assessing inflammation. The
Framingham risk score, fatty liver index (FLI), visceral adiposity index and CV risk scores were also
taken into consideration. As shown by the semantic map, which was subsequently confirmed by an
activation and competition system (ACS), obesity parameters are strictly associated with CV risk
factors, TI and inflammation; meanwhile, the single mineral elements seem to be unimportant. Data
obtained via ANN demonstrate that MetS may be at least partly mediated by altered mineral levels
also in the presence of obesity and that waist circumference is a crucial point to be monitored rather
than BMI alone. Furthermore, the mineral body burden is one of the important factors for CV risk.

Keywords: cardiovascular disease; obesity; metabolic syndrome; hair mineralogram; artificial
neural networks

1. Introduction

Over the last few decades, there has been an increasing interest in studying the
consequences of exposure to exogenous elements because it has several health effects, such
as developmental disorders, endocrine disruption, immunological syndromes, different
types of cancers and even death [1]. Although human exposure to exogenous elements is
often occupational due to the high level of industrial use of these elements, attention is
moving towards non-occupational environments because potentially harmful metals such
as Lead (Pb), Cadmium (Cd), Nickel (Ni), Arsenic (As) and Uranium (U) are contained in
particulate matter and in soil [2].

The contamination of fresh water by As is an increasingly important problem since it
has a well-known carcinogenic effect. Similarly, Pb has detrimental effects on the devel-
opment of the nervous system, and the findings of recent studies regarding its impact on
humans show that it is impossible to indicate a safe level of exposure. Cd contamination
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in farming soil leads to exposure through the consumption of polluted vegetables. The
consequences of cumulative and long-term exposure to mixtures of metals of different
origins, called the “cocktail effect”, are somehow underestimated [3]. Moreover, acute and
chronic exposure to air pollution and particulate matter can be associated with premature
deaths, which are mainly caused by cardiovascular (CV) diseases [4].

Obesity represents a factor of susceptibility to the adverse CV effects of pollution
through different possible mechanisms. An increase in the body mass index (BMI) corre-
lates with an increase in particulate absorption [5], and obesity itself modifies the cardiac
autonomic response (in terms of heart rate variability) to particulate matter (PM) [6]. More-
over, the vascular inflammation response to PM2.5, which occurs through C-reactive protein
mediation, is greater in subjects with obesity [7]. Some evidence shows that an increase in
BMI correlates with higher deposits of fine particles in the lungs [8]. A positive correlation
between exhaled nitric oxide, a marker of lung inflammation, and BMI was observed in
healthy adult subjects [9].

The existing data are still contradictory, despite the presence of multiple studies
indicating altered trace element status in obesity. Evidence is lacking as to the direction
of causality between these factors. The gap could be addressed by means of an artificial
neural network (ANN) analysis and an innovative data mining analysis known as an
auto-contractive map (Auto-CM), which is based on an ANN architecture. Auto-CM allows
for the discovery of hidden trends and associations among variables via a fuzzy clustering
approach [10]. The added value of this approach is represented by its ability to evidence the
organizing principles of a network of variables, which allows for the mapping of biological
processes and the use of automatic and analytical models to reconstruct the imprecise,
non-linear and simultaneous pathways underlying a complex set of data. In the last decade,
Auto-CM has been successfully tested in the medical field as well [11].

The aim of the present study is to find possible hidden trends and associations be-
tween hair minerals, metabolic syndrome (MetS) and CV risk in non-occupational exposed
subjects with overweight–obesity via ANN methods.

2. Materials and Methods
2.1. Participants

During a workers’ health promotion campaign for reducing cardiometabolic risks
and a nutritional educational program, 95 non-occupationally exposed participants with
overweight–obesity were recruited at the Centro Obesità e Lavoro, Fondazione IRCCS
Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy. Upon entering the study, each
participant signed an informed consent form and underwent a medical examination. The
exclusion criteria was a history of current chronic or neoplastic disease. The study was
approved by the Ethics Committee of Milan Policlinico Hospital (study registration number:
1370). We used people-first language (according to the recommendation of the European
Association for the Study of Obesity, EASO) to reduce bias associated with the term
“obesity” and to stop stigma that labels patients by their condition [12].

2.2. Anthropometrics and Lab Tests

Weight, height, waist circumference (WC) and body mass index (BMI) were obtained
via anthropometric evaluations. The BMI was calculated as the ratio between the weight (kg)
and height (m2), and obesity was defined for a BMI > 30 Kg/m2. Systolic and diastolic blood
pressure (SBP and DBP, respectively) were measured, and the mean was obtained from
three measurements taken at 3-minute intervals with a conventional sphygmomanometer
and the patient in a supine position.

Blood fasting tests were performed to measure glucose, insulin, glycated haemoglobin
(HbA1c), creatinine, total cholesterol (T-chol), LDL cholesterol (c-LDL), triglycerides (TG),
uric acid (UA), fibrinogen, homocysteine (Hcy), highly sensitive C-reactive protein (CRP)
and total blood count. Biochemical parameters were assessed using routine laboratory
methods on a Modular P automated analyser (Hitachi-Roche, Basel, Switzerland) with
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the relevant reference intervals or cut-offs currently used in our routine laboratory. The
quantitative determination of fibrinogen in citrate plasma samples was achieved using
an automated I.L. Coagulation System (Instrumentation Laboratory), and HbA1c was
measured via high-pressure liquid chromatography (HPLC) on a VARIANT II Turbo
Instrument (BIORAD Italia, Segrate, Italy). A total blood count was performed on a Sysmex
XE-2100 haematology analyser (Dasit Italia, Cornaredo, Italy).

2.3. Indexes

For the present study, the following indexes were calculated. Metabolic syndrome
was diagnosed according to the 2005 US National Cholesterol Education Program—Adult
Treatment Panel III criteria (NCEP ATP III) [13]. The Framingham risk score [14], CV risk,
as described in “Progetto Cuore” [15], the visceral adiposity index (VAI) [16], and the fatty
liver index (FLI), described elsewhere [17], were calculated for each participant as well. In
particular, the VAI was determined on the basis of BMI, WC, TG and HDL cholesterol levels.
It is indicative of adipose distribution and thus of cardiometabolic risk [18]. Reference
values were defined according to age and had a range of <2.23 for adults aged 30 to 41 years,
<1.92 for those between 42 and 51 years old, <1.93 for those aged 52 to 65 years, and <2
for adults aged ≥66 years [19]. On the other hand, the FLI is an algorithm based on the
BMI, WC, TG and gamma-glutamyl-transferase that was developed almost a decade ago to
predict fatty liver in the general population. The index ranges from 0 to 100 in which an
FLI < 30 excludes fatty liver and an FLI ≥ 60 points to it [20]. The above cut-off indexes
were used by clinicians but were not in the present ANN analysis.

2.4. Hair Analisys

All hair specimens were cut within 3 cm from the scalp and stored in labelled Ziploc
bags at room temperature. The samples were mailed to Doctor’s Data in the individual
kits provided and were treated using their laboratory analysis protocols [21]. They were
analysed for metal content using inductively coupled plasma mass spectrometry (ICP-MS)
as described elsewhere [22]. The metals assessed with this technique were: Aluminium
(Al), Antimony (Sb), Arsenic (As), Barium (Ba), Bismuth (Bi), Cadmium (Cd), Lead (Pb),
Mercury (Hg), Uranium (U), Nickel (Ni), Silver (Ag), Tin (Sn), Titanium (Ti), Copper (Cu),
Zinc (Zn), Manganese (Mn), Chrome (Cr), Vanadium (V), Molybdenum (Mo), Boron (B),
Iodine (I), Lithium (Li), Selenium (Se), Strontium (Sr), Sulphur (S), Cobalt (Co), Iron (Fe),
Germanium (Ge), Rubidium (Rb), Zirconium (Zr) and Gold (Au). A total toxic element
score, or toxicity index (TI), was calculated by the Doctor’s Data laboratory using a weight
average based upon the relative toxicity (per gram) of individual elements. The higher the
TI score, the more toxic the combination of hair metals.

2.5. ANN Analysis

The use of standard statistical models is difficult because many relationships in the
system are unknown. The use of an artificial neural network is suitable for constructing
a good model as it can implicitly take into account all dependencies in the system and
process inaccurate and incomplete data. Therefore, in this study, data were analysed
using an ANN with the Auto-Contractive Map (Auto-CM) software, developed by Semeion
Research Center Science Communication (Rome, Italy) and described elsewhere [11]. All the
parameters considered were processed simultaneously. Through this method, correlations
were made, non-linear associations between variables were maintained and connection
patterns between groups of variables were captured at the same time. The result is a map
with nodes (important points) and arcs (connections) which must be interpreted according
to the available evidence. The system also provides a quantification of the “strength”
of the links among variables (nodes of the graph) via a numerical coefficient, called the
link strength, which ranges from 0 (minimum strength) to 1 (maximum strength). The
superimposed value is proportional to the strength of the link and can be read as the
probability of a transition from any state variable to any other state variable [23]. To run
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this model, dichotomic values were obtained for each of the variables considered in the
present study. This pre-processing scaling allowed for a proportional comparison among
all the variables and implied the existence of links of each variable when the values tended
to be high or low. Finally, the data were processed using an auto-associative neural network
developed by Buscema et al. [24] known as the activation and competition system (ACS),
(application described elsewhere [25] and in Appendix A) in order to emphasize the causal
relationship between TI and CV risk, as expressed by the Framingham risk score. We have
deliberately avoided pruning since the approach with this unusual data set was free of a
hypothesis. The ultimate goal of this data mining model is to discover hidden trends and
associations among variables since this algorithm is able to create a semantic connectivity
map in which non-linear associations are preserved, and explicit connection schemes are
described. In Appendix A, the detailed methods of Auto-CM and ACS are reported.

3. Results

The present study used the hair mineralogram as an indicator of exposure and the
internal dose of the different toxic metals in order to assess the possible relation to MetS
and CV risk in our group of subjects with overweight–obesity. Table 1 is a description of
the study sample, which consisted of 95 participants (aged 51 ± 12 years).

Table 1. Biometrics and biochemical data of study participants.

Unit of Measure Mean Standard Deviation Minimum Maximum Median

BMI - 32.7 5.7 27.5 54.7 32.1

Waist Circumference - 99 13 75 137 97

Systolic Blood Pressure mmHg 124 17 85 170 120

Diastolic Blood Pressure mmHg 79 11 55 100 80

Heart rate bpm 72 9 52 100 70

White blood cells 10 × 109/L 6.90 1.79 3.69 14.39 6.67

Red blood cells 10 × 1012/L 4.85 0.48 3.71 6.49 4.77

Haemoglobin g/dL 13.7 1.3 10.4 17.4 13.6

Haematocrit % 41 3 32 50 41

Platelets 10 × 109/L 248 59 72 414 247

Fibrinogen mg/dL 332 61 70 491 328

C-reactive protein mg/dL 0.51 0.77 0.03 4.48 0.25

Uric acid mg/dL 4.9 1.2 1.8 8.2 4.7

Creatinine mg/dL 0.74 0.13 0.51 1.16 0.72

Triglycerides mg/dL 109 47 43 279 98

Total cholesterol mg/dL 216 41 126 336 213

LDL cholesterol mg/dL 132 36 58 226 128

Homocysteine µmol/L 10.9 3.8 5.0 27.8 10.4

Glycaemia mg/dL 96 27 57 297 91

Insulin mIU/mL 12.50 6.01 0.40 32.60 11.90

Glycated haemoglobin, HbA1c % 5.9 0.7 4.4 9.5 5.8

Fatty liver index 57.6 28.5 5.0 99.7 63.0

Visceral adiposity index 3.8 2.6 0.9 17.5 2.7

Framingham risk score 3.8 3.9 0 20 2.0

CV risk “Progetto Cuore” 4.1 5.5 0.2 29 2.1

Table 2 provides the mean contents in terms of the minerals and toxic elements from
the hair samples of the 95 participants. Most of the toxic elements were above the reference
values. Of note: the Barium (Ba) level was (mean ± SD) 1.29 ± 1.63 µg/g (versus a ref-
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erence value of <0.75), Cadmium (Cd) was 0.74 ± 6.66 µg/g (reference value < 0.070),
the Lead (Pb) level was 1.59 ± 3.49 µg/g (versus a reference value < 1.0), Mercury
(Hg) was 1.64 ± 1.49 µg/g (reference value < 0.40), Uranium (U) was 0.11 ± 0.12 µg/g
(versus < 0.060) and Nickel (Ni) was 0.52 ± 0.82 µg/g (normal range < 0.20). Finally, Silver
(Ag) was 1.68 ± 5.13 µg/g (normal value < 0.14) and Tin (Sn) was 0.86 ± 1.48 µg/g (normal
value < 0.30). Regarding the hair minerals, most of the elements fell within the range of
normality with the exception of Strontium (Sr), which had a mean value of 9.70 ± 8.16 µg/g
(versus a reference value of 0.21–2.1), and Cobalt (Co) at 0.05 ± 0.09 µg/g (versus a reference
value of 0.004–0.020).

Table 2. Hair mineral elements in 95 subjects.

Reference Interval µg/g Mean Standard Deviation Minimum Maximum Median

Toxic metals

Aluminium (Al) <8.0 7.64 13.12 0.70 94.00 4.10

Antimony (Sb) <0.066 0.05 0.12 0.01 1.10 0.02

Arsenic (As) <0.080 0.04 0.04 0.01 0.27 0.03

Barium (Ba) <0.75 1.29 1.63 0.04 11.00 0.95

Bismuth (Bi) <2.0 0.06 0.18 0.00 1.60 0.02

Cadmium (Cd) <0.070 0.74 6.66 0.00 65.00 0.03

Lead (Pb) <1.0 1.59 3.49 0.04 29.00 0.59

Mercury (Hg) <0.40 1.64 1.49 0.09 7.80 1.20

Uranium (U) <0.060 0.11 0.12 0.01 0.63 0.07

Nickel (Ni) <0.20 0.52 0.82 0.04 6.20 0.30

Silver (Ag) <0.14 1.68 5.13 0.01 38.00 0.21

Tin (Sn) <0.30 0.86 1.48 0.02 7.80 0.28

Titanium (Ti) <0.70 0.74 0.44 0.24 2.40 0.59

Essential and
other elements

Copper (Cu) 11–32 17.01 14.96 6.70 140.00 14.00

Zinc (Zn) 110–190 176.6 63.7 61.0 440.0 170.0

Manganese (Mn) 0.08–0.50 0.27 0.37 0.03 3.20 0.18

Chromium (Cr) 0.40–0.70 0.47 0.10 0.33 0.94 0.44

Vanadium (V) 0.025–0.10 0.05 0.04 0.01 0.33 0.04

Molybdenum (Mo) 0.040–0.090 0.03 0.01 0.01 0.08 0.03

Boron (B) 0.50–3.5 0.97 0.82 0.07 4.70 0.68

Iodine (I) 0.25–1.3 1.14 3.06 0.07 26.00 0.51

Lithium (Li) 0.007–0.020 0.02 0.08 0.00 0.75 0.01

Selenium (Se) 0.70–1.1 0.94 2.54 0.21 25.00 0.62

Strontium (Sr) 0.21–2.1 9.70 8.16 0.16 35.00 9.20

Sulphur (S) 44,000–51,000 47,376 1955 43,400 51,400 47,400

Cobalt (Co) 0.004–0.020 0.05 0.09 0.00 0.49 0.02

Iron (Fe) 7.0–16 15.07 6.22 3.90 36.00 15.00

Germanium (Ge) 0.030–0.040 0.03 0.01 0.03 0.05 0.03

Rubidium (Rb) 0.008–0.080 0.08 0.17 0.00 1.10 0.02

Zirconium (Zr) 0.060–0.70 0.05 0.06 0.01 0.40 0.03

Gold (Au) <0.50 0.14 0.34 0.00 3.00 0.05

Figure 1 shows the semantic connectivity map of the variables which was created by
the Auto-CM algorithm. The representations indicate nodes and arc connections, highlight-
ing the links between different variables. There is a value hierarchy: nodes that have more
connections are more important. The so called “minimum spanning tree” was obtained
from a matrix of distances in which each node is related to the others; the smaller the
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distances between nodes, the higher the affinity between them. Connected variables are
called a “hub”, and the variable in red (FLI in Figures 1–3) is the central point of the graph.
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Figure 1. Semantic connectivity map of variables created by the Auto-CM algorithm. Abbreviations
(in alphabetical order): Ag: Silver; Al: Aluminium; As: Arsenic; Au: Gold; Ba: Barium; Bi: Bismuth;
Cd: Cadmium; chol-T: total cholesterol; Co: Cobalt; Cr: Chromium; CRP: C-reactive protein; Cu:
Copper; CV: cardiovascular; DBP: diastolic blood pressure; Fe: Iron; FLI: fatty liver index; Ge:
Germanium; gly: glucose; glycHB: glycated haemoglobin; Hcy: haematocrit; HCT: haematocrit; Hg:
Mercury; HGB: haemoglobin; HR: heart rate; INS: insulin; LDL-c: LDL cholesterol; Li: Lithium; MetS:
metabolic syndrome; Mn: Manganese; Mo: Molybdenum; Ni: Nickel; Pb: Lead; PLT: platelets; RBCs:
red blood cells; Rb: Rubidium; Sb: Antimony; SBP: systolic blood pressure; Se: Selenium; Sn: Tin;
Sr: Strontium; Ti: Titanium; Trigly: triglycerides; U: Uranium; V: Vanadium; VAI: visceral adiposity
index; WBC: white blood cells; Zn: Zinc; Zr: Zirconium.

As shown in Figure 2, the numbers along the lines (arches) refer to the strength of
the association between two adjacent nodes. The range of this value is from 0 to 1. This
value derives from the original weight developed by Auto-CM during the training phase;
it ranges from 0 to 1 and is proportional to the strength of the connections between two
variables. In the semantic map, the central hub is represented by the FLI, linked with a
strength of 0.99 to the WC, MetS, BMI > 30 Kg/m2 (unsurprisingly, as the index is based on
waist circumference, BMI, triglycerides and gamma-glutamyl-transferase) but also with
fibrinogen and uric acid, as shown in Figure 2. In turn, fibrinogen is strictly connected
(0.99) with platelets, age, diastolic blood pressure, haematocrit and the hair toxicity index.

WC is a hub, triply connected with glycated haemoglobin (with a strength of 0.96),
which is in turn connected to blood glucose, with CRP (0.81), and with insulin, which is
connected to triglycerides.

Triglycerides, then, are a hub between CV risk and the VAI. Peripherally, we can
observe the branch of other CV risk factors and the Framingham risk score, which is
connected to triglycerides with a strength of 0.94.
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connected to Zinc (Zn), Mercury (Hg) and Nickel (Ni).

Finally, all the components of the blood count bind in various ways to many hair
metals and toxic elements with strengths ranging from 0.97 to 0.57, depending on the
element considered.

Figure 3 graphically shows the results of the application of the ACS in evaluating
the causation links between cardiovascular risk (expressed by the Framingham risk score,
bwith CV risk similarly calculated by “Progetto Cuore”) and the selected variables. The
activation variable is represented in red, while the response variables are in white in terms
of timing and intensity. Of note, a high Framingham risk score is causally connected with
a BMI > 30, age, diastolic blood pressure, fibrinogen, MetS, FLI and TI. The hierarchy in
which these variables influence the activation variables is shown in the following image.
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Figure 3. The activation and competition system (ACS) and the steady state reached after the
activation of Framingham risk score. The analysis via the ACS system was performed after pruning
the mineral values. Framingham risk score is hierarchically connected with a BMI > 30, TI, MetS,
fibrinogen, FLI, age and diastolic blood pressure.

Figure 4 shows the dynamics of the variables after the activation of the Framingham
index, which leads to the steady state of the ACS. This allows for a better appreciation
of the hierarchy of the variables involved. In particular, the increase in the toxicity index
immediately occurs after that of obesity and is practically synchronous with MetS, which
is very interesting. Then, in the activation dynamics, other variables take place in the
following order: fibrinogen, FLI, age and diastolic blood pressure.
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4. Discussion

The findings of the present study show that CV risk, as expressed by the Framingham
score, is strongly and unsurprisingly related to obesity (BMI > 30 Kg/m2) but also to the
overall effect of the toxic minerals found in the hair, known as the toxicity index.

The epidemic of CV risks and immunological and neurological diseases are likely
associated with environmental toxins [26,27], which can elicit independent, additive or
synergistic toxic effects. Minimal risk levels (MRLs) for exposures, i.e., the amount of a
substance a person can be exposed to without a detectable health risk, have not yet been
considered; humans bioaccumulate metals [28], but our knowledge of adverse effects is
primarily based on studies of single toxicants. Moreover, individuals differ considerably in
their sensitivities to metals, and susceptibility to toxicity varies with age, gender, pregnancy
status, nutritional status, total toxic load and genetics (e.g., methylation). The potentially
toxic elements differ with respect to their relative toxicities, and low-level exposures are
associated with long-term effects that were previously unrecognized [29]. The accumulation
of more than one toxic element may have synergistic adverse effects, even if the level of
each individual element is not very high. Therefore, a total toxic element “score” was used
in this study (here called toxicity index) and was estimated using a weighted average based
upon the relative toxicity.

Regarding its contained elements, hair is essentially an excretory tissue rather than
a functional one. It is a protein (keratine) synthesized in the hair follicle whose secreted
elements are permanently incorporated into its structure. Therefore, hair element analysis
provides important information owing the characteristic of a “temporal record” of element
metabolism, such as Magnesium (Mg), Chromium (Cr), Zinc (Zn), Copper (Cu) and Se-
lenium (Se), all co-factors for several enzymes and biochemical reactions and exposure
to toxic substances. Hence, hair can be considered a useful, cheap and non-invasive tool
for detecting recent exposure to toxic elements such as Arsenic (As), Aluminium (Al),
Cadmium (Cd), Lead (Pb), Antimony (Sb) and Mercury (Hg). Nevertheless, the correlation
between levels of toxic and trace elements in hair, blood or plasma is still under debate,
as is the accountability of these tests [30]. For the same reason, the association between
the hair concentration of selected elements and diseases, especially CV ones, remains con-
troversial [31,32]. In spite of this, thanks to technological improvements, instrumentation
and the application of scientific protocols, hair element analysis has become a valuable
tool for providing reliable and useful data and may be considered an important material
for biological monitoring [33]. In this scope, a toxicity index of overall exposure to metals
and toxic elements may offer important information regarding biological hazards and
health risks.

Metabolic syndrome (MetS) is a complex disorder defined by a cluster of intercon-
nected factors increasing the risk of cardiovascular atherosclerotic diseases. It has been
already pointed out that a high mercury concentration in hair tissue may increase the risk
of metabolic syndrome [34]. A recent work concluded that trace element and mineral status
may partially contribute to metabolic risk in subjects with obesity [35]. Fibrinogen, as a
factor of tissue injury and inflammation [36,37], has already been described and is in line
with the findings of the present study, which demonstrates fibrinogen as a hub linked to the
FLI and the toxicity index. Similarly, and widely recognized among CV risk factors [38–40]
in the ANN of the present study, waist circumference is linked with the FLI on one side
and is connected on the other with the branch of the Framingham risk score and glucose
metabolism. Some evidence suggests that metabolic disorders, such as obesity and type 2
diabetes, are associated with mineral disbalances, as assessed through hair mineralograms.
In particular, a study analysing the hair contents of Chromium (Cr), Iron (Fe) and Zinc
(Zn) in men with obesity (BMI > 30 kg/m2), as well as overweight and normal-weight
men, observed that those with a BMI > 30 kg/m2 presented a mean Chromium (Cr) con-
centration of 0.096 µg/g and a mean Iron (Fe) concentration of 9.42 µg/g, values that were
significantly higher than those of the overweight subjects, and Zinc (Zn) mean values of
183 µg/g, which were significantly lower than those of the overweight participants [41].
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The findings of a similar case–control study showed reduced hair levels of Copper (Cu) and
Zinc (Zn) in subjects with obesity compared to normal-weight subjects [42]. The findings
of our study are in line with these results: in our sample, the values of Chromium (Cr) and
Iron (Fe) were higher (0.47 and 15.7 µg/g, respectively), and Zinc (Zn) was 176.6 µg/g,
while falling within the reference intervals. Another work analysed the levels of selected
elements in hair samples of subjects with type 2 diabetes compared to healthy controls [43].
The findings showed that levels of Zinc (Zn), Copper (Cu) and Chromium (Cr) in the
diabetic participants (with HbA1c >7) were markedly lower than in controls, and that the
concentrations decreased considerably with an increase in glycated haemoglobin. The
levels of Iron (Fe) and Magnesium (Mg) in the diabetic subjects were lower (though not
significantly), and the concentration of Iron (Fe) decreased significantly with increases in
HbA1c (p < 0.05). In contrast, the concentration of Arsenic (As) tended to increase with
increases in HbA1c (p < 0.10) [43].

Deficiencies in trace elements such as Cr, Zn, Cu and Mg have been associated with
glucose tolerance and insulin resistance [44,45]. For instance, the glucose tolerance factor
(GTF) is a Chromium (Cr)-containing compound and is related to glucose homeostasis. The
precise biochemical basis for the effect of Cr on glucose homeostasis is unknown, although
some evidence suggests that GTF enhances the binding of insulin to its receptors [44]. Zinc
(Zn) plays a role in insulin synthesis, stabilizes the insulin stored in pancreatic beta cells
and has an important role in secreting it from the same cells [43–46]. Finally, Magnesium
(Mg) is responsible for the uptake of glucose in insulin-dependent tissues.

In this study, trace elements remained at the periphery of the semantic map, suggesting
a possible synergistic effect provided by a non-algebraic relationship between the single
elements. For example, Copper (Cu) lies far from the centre of the map, weakly linked to
the VAI, which is a useful tool in daily clinical practice and in population studies for the
assessment of cardiometabolic risk associated with visceral obesity.

Lead (Pb), a toxic metal associated with adverse cardiovascular outcomes [47], is far
from the hub. The same map indicates known links between minerals and biochemical
parameters. It also shows that Chromium (Cr) and other toxic minerals are linked to Molyb-
denum (Mo), which, in turn, is linked to red blood cells and haematocrit, as it is known
that Molybdenum enhances the osmotic resistance of red blood cells [48]. Iron, which binds
to various other metals, is known to correlate with haemoglobin and haematocrit. Boron,
linked with triglycerides, may act as a metabolic regulator in several enzymatic systems, as
has been proven by research on animal models.

Zinc (Zn) is one of the essential trace elements whose impact on hypertension is
documented. As a micronutrient, it functions as a co-factor for up to 10% of the proteins
in living organisms, playing a vital role in a range of biological processes in the human
body [49]. In the semantic map of this study, Zn is related to blood pressure and, in turn,
to fibrinogen. Additionally, toxic elements lie on the outskirts of the semantic map, while
surprisingly, the toxicity index is strictly linked to the fibrinogen hub. To explain the
increase in the amount of reactive oxygen species (ROS) due to hyperglycaemia, we should
take into account a possible link between complications of MetS and alterations in the hair
mineral content [50]. Superoxide dismutase (SOD) nullifies the effects of superoxide by
converting it into hydrogen peroxide, Zn and Cu act as cofactors for the isomers of the
SOD enzyme [51]. Fibrinogen has already been indicated as an altered inflammatory index
parameter in subjects with metabolic syndrome and obesity [52].

The findings of this study and especially of the ACS show that CV risk, expressed
through the Framingham score, is strictly related to obesity and the toxicity index. It is
also practically synchronic to MetS in already known parameters such as age and diastolic
blood pressure and in less-known parameters such as fibrinogen and FLI. In a recent
retrospective study, FLI was indicated not only as a predictor of a non-alcoholic fatty
liver disease diagnosis but also as designating baseline for the future development of
cardiovascular disease on long-term follow-ups across weight categories and the fatty
liver index spectrum [53]. Lastly, in calculating the FLI, waist circumference is taken
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into consideration and BMI is not. This underlines the importance of adding it to simple
parameters, clinically determining the risk of CVD in subjects with obesity and with Mets.
The innovative data analysis with the ANN is one of the strengths of the present study
because the ANN can simultaneously process all the parameters considered and investigate
all linear and non-linear relationships within them.

The limitation of the study design is the absence of a normal-weight control group;
therefore, we chose neural networks to analyse the database, as they could possibly high-
light the hidden link between the considered variables. As already stated in the introduc-
tion [1–4] and recently reported by the available literature [47,54], toxic metals (i.e., Lead,
Arsenic and Cadmium, among others) contribute to an increased CVD risk, with environ-
mental contamination a major concern in need of further investigation and monitoring.
Hair is potentially an excellent marker of exposure to metals [55]; unfortunately, it has a set
of limitations that mean it is not always reliable, as it is affected by different factors that are
also specific to certain regions and subjects.

We should also bear in mind the wide dissemination of metals in the past century
which affect millions of people. We feel sure that in the future, new factors will likely be
reported for the effective interpretation, validity and application of results of hair analyses.

In conclusion, this study suggests the potential role of the mineral body burden on
the increase in metabolic syndrome, although further studies with more subjects divided
by age, gender, normal weight and pathology are needed rather than taking only subjects
with overweight/obesity reacting to a single toxic mineral as a CV risk factor.
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Appendix A

Appendix A.1. Auto-CM

The auto-contractive map (Auto-CM for short) was born as a new artificial neural
network. It was designed by Massimo Buscema at the Semeion Research Center. The
Auto-Cm system finds, via a specific learning algorithm, a square matrix of weighted
connections among the variables of any dataset. This matrix of connections presents many
suitable features: (a) non-linear associations among variables are preserved; (b) connection
schemes among clusters of variables are captured; and (c) complex similarities among
variables become evident. The ultimate goal of this data mining model is to discover
hidden trends and associations among variables since this algorithm is able to create a
semantic connectivity map in which non-linear associations are preserved and explicit
connection schemes are described. Briefly, this approach describes a typical context of living
systems in which a continuous, time-dependent, complex change in the variable value is
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present. A simple filter (a minimum spanning tree by Kruskal) is then introduced into
the matrix of the Auto-CM system. This approach shows the map of relevant connections
between and among variables and the principal hubs of the system. Hubs can be defined
as variables with the maximum number of connections in the map. The architecture of
Auto-CM is shown in Figure A1.

Metabolites 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 

Author Contributions: Conceptualization, L.V.; formal analysis, E.G.; investigation, L.V., A.S.T., S.T. 
and L.T.; methodology, L.V., E.G. and S.T.; software, A.S.T. and E.G.; writing—original draft, L.V., 
A.S.T., S.T. and L.T.; writing—review and editing, L.V., A.S.T., E.G. and L.T. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki and under the term of the relevant local regulations. Each participant provided 
written informed consent, and the study was approved by the Ethics Committee of Milan Policlinico 
Hospital (study registration number: 1370). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: Data sharing not applicable. Data is not publicly available due to pri-
vacy or ethical restrictions. 

Acknowledgments: We are grateful to Catherine Ricci, who speaks and teaches English as a mother 
tongue, who revised the linguistic aspect of the manuscript. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 

Appendix A.1. Auto-CM 
The auto-contractive map (Auto-CM for short) was born as a new artificial neural 

network. It was designed by Massimo Buscema at the Semeion Research Center. The Auto-
Cm system finds, via a specific learning algorithm, a square matrix of weighted connec-
tions among the variables of any dataset. This matrix of connections presents many suita-
ble features: (a) non-linear associations among variables are preserved; (b) connection 
schemes among clusters of variables are captured; and (c) complex similarities among var-
iables become evident. The ultimate goal of this data mining model is to discover hidden 
trends and associations among variables since this algorithm is able to create a semantic 
connectivity map in which non-linear associations are preserved and explicit connection 
schemes are described. Briefly, this approach describes a typical context of living systems 
in which a continuous, time-dependent, complex change in the variable value is present. 
A simple filter (a minimum spanning tree by Kruskal) is then introduced into the matrix 
of the Auto-CM system. This approach shows the map of relevant connections between 
and among variables and the principal hubs of the system. Hubs can be defined as varia-
bles with the maximum number of connections in the map. The architecture of Auto-CM 
is shown in Figure A1. 

 
Figure A1. Architecture of the Auto CM neural network. 

Figure A1. Architecture of the Auto CM neural network.

The specificity of the Auto-CM algorithm is to minimize a complex cost function with
respect to the traditional functions:

Traditional minimization cost function:
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Auto-CM minimization cost function:

E = Min
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}
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C
)
;

N = Number of Variables (Columns);
M = Number of Patterns (Rows).

From a mathematical point of view, it becomes evident that the traditional mini-
mization includes only second-order effects, while Auto-CM considers also a third order.
Practically, this means that the Auto-CM algorithm is able to discover variable similarities
that are completely embedded into the dataset and invisible to the other classical tools.
This approach describes a context which is typical of living systems in which a continuous,
time-dependent, complex change in the variable value is present. After the training phase,
the matrix of the Auto-CM algorithm represents the warped landscape of the dataset. The
auto-contractive map is a special type of ANN which, compared with classical ANNs
which have random initial weight values for the connections, begins from all connections
set up with the same values. Therefore, it does not suffer the problem of the symmet-
ric connections. During training, it develops for each connection only positive values.
Therefore, Auto CM does not present inhibitory relations among nodes but only different
strengths of excitatory connections. Auto CM can also learn under hard conditions, that is,
when the connections of the main diagonal of the second connection matrix are removed.
When the learning process is organized in this way, Auto CM seems to find a specific
relationship between each variable and any other. Consequently, from an experimental
point of view, it seems that the ranking of its connection matrix is equal to the ranking of
the joint probability between each variable and the others.

Once an Auto-CM connection matrix is obtained, it is then filtered by a minimum
spanning tree algorithm (MST), generating a graph of which biological evidence has already
been tested in the medical field [10,11,56,57].
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Appendix A.2. Minimum Spanning Tree

A minimum spanning tree (MST) is a spanning tree of a connected, undirected graph.
It connects all the vertices together with the minimal total weighting for its edges. The MST
algorithm was originally described by the Czech scientist Otakar Boruvka in 1926, who
aimed to optimize the planning of electricity connections among cities, and was later on
refined by Kruskal with a specific deterministic algorithm [58].

In the bio-medical field, the MST has been used particularly in microarray clustering.
Although MST-based clustering is formally equivalent to the dendrograms produced by
hierarchical clustering under certain conditions, they can be extremely visually different.
MST has to do with the least action principle.

In classical mechanics, Maupertuis’s principle states that the path followed by a
physical system is the one of least length. It is a special case of the more generally stated
principle of least action. Using the calculus of variations, it results in an integral equation
formulation of the equations of motion for the system. The energy-based least action
principle (LAP) has proven to be very successful for explaining natural phenomena in both
classical and modern physics.

In biological systems, the kinetic paths from the least action principle quantify the
transition processes among normal state and the pathological state. For this reason, our
assumption is that also in case of variables describing normal and pathological states, their
interconnection system must naturally tend to least length, which is described well by the
graph generated by the MST. Thus, a minimum spanning tree is a spanning tree with a
weight less than or equal to the weight of every other spanning tree. In practical terms,
the MST shows the best way to connect the variables in a tree and the shortest possible
combination, allowing to the data to be presented in a simplified graph.

The main advantage of the MST algorithm is to provide a synthetic view of the
variable ensemble and to make it very easy to understand clustering through links directly
connecting variables that are very close each other. The importance of the variables in
the graph is related to their number of links. Hubs may be defined as the variables with
the maximum number of connections in the graph. The clustering distance among two
variables is related to their degrees of separation.

A single graph can have many different spanning trees. We can also assign a weight
to each edge, which is a number representing how unfavourable it is, and use this to assign
a weight to a spanning tree by computing the sum of the weights of the edges in that
spanning tree. The minimum spanning tree (MST) displays the shortest combination out
of all potential methods to connect the variables in a tree, as shown by the example in
Figure A2.
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Figure A2 shows the graph theory applied to four points (variables) with the distances
visible on the arches in a multi-dimensional space. Part A of Figure A2 depicts a complete
graph in which all points are connected. Part B of Figure A2 describes sixteen possible
spanning trees, i.e., the possibilities of connecting the four points while avoiding loops.
By considering the distances, there is one spanning tree in which the sum of the distances
produces a shortest path (sum = 6). This is the minimum spanning tree of this set of points.
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