Next Article in Journal
Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification
Next Article in Special Issue
Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries
Previous Article in Journal
Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessReview
Nanomaterials 2017, 7(5), 95; doi:10.3390/nano7050095

One-Dimensional Electron Transport Layers for Perovskite Solar Cells

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
National Research Council, National Institute for Nanotechnology, 11421 Saskatchewan Drive NW, Edmonton, AB T6G 2M9, Canada
These authors contributed equally.
Author to whom correspondence should be addressed.
Academic Editor: Shuangqiang Chen
Received: 12 February 2017 / Revised: 3 April 2017 / Accepted: 24 April 2017 / Published: 29 April 2017
(This article belongs to the Special Issue New Developments in Nanomaterials for Energy Storage and Conversions)
View Full-Text   |   Download PDF [2981 KB, uploaded 29 April 2017]   |  


The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. View Full-Text
Keywords: photovoltaics; ordered bulk heterojunctions; solution processing; light scattering; surface traps; electrochemical anodization; solvothermal synthesis; metal oxide; TiO2; ZnO photovoltaics; ordered bulk heterojunctions; solution processing; light scattering; surface traps; electrochemical anodization; solvothermal synthesis; metal oxide; TiO2; ZnO

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Thakur, U.K.; Kisslinger, R.; Shankar, K. One-Dimensional Electron Transport Layers for Perovskite Solar Cells. Nanomaterials 2017, 7, 95.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top