Next Article in Journal
Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge
Next Article in Special Issue
Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode
Previous Article in Journal
Hydrothermal Synthesis of Ultrasmall Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation
Previous Article in Special Issue
Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries
Article Menu

Export Article

Open AccessFeature PaperArticle
Nanomaterials 2015, 5(4), 2212-2230;

Structural and Morphological Tuning of LiCoPO4 Materials Synthesized by Solvo-Thermal Methods for Li-Cell Applications

Department of Science, University of Basilicata, V.le Ateneo Lucano 10, Potenza 85100, Italy
CNR-ISC, U. O. S. La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy
These authors contributed equally to this work.
Author to whom correspondence should be addressed.
Academic Editors: Andy (Xueliang) Sun and Xifei Li
Received: 14 October 2015 / Revised: 25 November 2015 / Accepted: 27 November 2015 / Published: 10 December 2015
(This article belongs to the Special Issue Nanostructured Materials for Li-Ion Batteries and Beyond)
View Full-Text   |   Download PDF [3462 KB, uploaded 10 December 2015]   |  


Olivine-type lithium metal phosphates (LiMPO4) are promising cathode materials for lithium-ion batteries. LiFePO4 (LFP) is commonly used in commercial Li-ion cells but the Fe3+/Fe2+ couple can be usefully substituted with Mn3+/Mn2+, Co3+/Co2+, or Ni3+/Ni2+, in order to obtain higher redox potentials. In this communication we report a systematic analysis of the synthesis condition of LiCoPO4 (LCP) using a solvo-thermal route at low temperature, the latter being a valuable candidate to overcome the theoretical performances of LFP. In fact, LCP shows higher working potential (4.8 V vs. 3.6 V) compared to LFP and similar theoretical capacity (167 mAh·g−1). Our goal is to show the effect of the synthesis condition of the ability of LCP to reversibly cycle lithium in electrochemical cells. LCP samples have been prepared through a solvo-thermal method in aqueous-non aqueous solvent blends. Different Co2+ salts have been used to study the effect of the anion on the crystal growth as well as the effect of solution acidity, temperature and reaction time. Materials properties have been characterized by Fast-Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopies. The correlation between structure/morphology and electrochemical performances has been investigated by galvanostatic charge-discharge cycles. View Full-Text
Keywords: LiCoPO4; olivine; cathode materials; Li batteries; solvo-thermal synthesis LiCoPO4; olivine; cathode materials; Li batteries; solvo-thermal synthesis

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Manzi, J.; Curcio, M.; Brutti, S. Structural and Morphological Tuning of LiCoPO4 Materials Synthesized by Solvo-Thermal Methods for Li-Cell Applications. Nanomaterials 2015, 5, 2212-2230.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top