Next Article in Journal / Special Issue
A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs
Previous Article in Journal / Special Issue
Mechanotransduction: Tuning Stem Cells Fate
Article Menu

Export Article

Open AccessReview
J. Funct. Biomater. 2011, 2(3), 88-106; doi:10.3390/jfb2030088

Micro- and Nanoengineering Approaches to Control Stem Cell-Biomaterial Interactions

Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
Author to whom correspondence should be addressed.
Received: 24 May 2011 / Revised: 11 June 2011 / Accepted: 21 June 2011 / Published: 24 June 2011
(This article belongs to the Special Issue Stem Cells and Biomaterials)
View Full-Text   |   Download PDF [739 KB, uploaded 24 June 2011]   |  


As our population ages, there is a greater need for a suitable supply of engineered tissues to address a range of debilitating ailments. Stem cell based therapies are envisioned to meet this emerging need. Despite significant progress in controlling stem cell differentiation, it is still difficult to engineer human tissue constructs for transplantation. Recent advances in micro- and nanofabrication techniques have enabled the design of more biomimetic biomaterials that may be used to direct the fate of stem cells. These biomaterials could have a significant impact on the next generation of stem cell based therapies. Here, we highlight the recent progress made by micro- and nanoengineering techniques in the biomaterials field in the context of directing stem cell differentiation. Particular attention is given to the effect of surface topography, chemistry, mechanics and micro- and nanopatterns on the differentiation of embryonic, mesenchymal and neural stem cells. View Full-Text
Keywords: micro- and nanotopography; microwells; microarrays; embryonic and adult stem cells; stem cell therapy micro- and nanotopography; microwells; microarrays; embryonic and adult stem cells; stem cell therapy

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Dolatshahi-Pirouz, A.; Nikkhah, M.; Kolind, K.; Dokmeci, M.R.; Khademhosseini, A. Micro- and Nanoengineering Approaches to Control Stem Cell-Biomaterial Interactions. J. Funct. Biomater. 2011, 2, 88-106.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
J. Funct. Biomater. EISSN 2079-4983 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top