Soil–Plant Interaction Mediated by Indigenous AMF in Grafted and Own-Rooted Grapevines under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Climate Data and Ombrometric Diagram
2.3. Samples Collection
2.4. Soil Physical and Chemical Parameters
2.5. Estimation of Mycorrhizal Root Colonization
2.6. Physiological Parameters—Stomatal Conductance and Chlorophyll Content
2.7. Statistical Analysis
3. Results
3.1. Climate Analysis
3.2. Soil Analysis
3.3. Mycorrhizal Colonization
3.4. Vine Physiological Responses
3.5. Statistical Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.K.; Kashyap, P.L.; Santoyo, G.; Newcombe, G. Plant Microbiome: Interactions, Mechanisms of Action, and Applications. Front. Microbiol. 2021, 12, 706049. [Google Scholar] [CrossRef]
- Darriaut, R.; Lailheugue, V.; Masneuf-Pomarède, I.; Marguerit, E.; Martins, G.; Compant, S.; Ballestra, P.; Upton, S.; Ollat, N.; Lauvergeat, V. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. Hortic. Res. 2022, 9, uhac019. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Batista, B.D.; Bazany, K.E.; Singh, B.K. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 2022, 234, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Hamonts, K.; Trivedi, P.; Garg, A.; Janitz, C.; Grinyer, J.; Holford, P.; Botha, F.C.; Anderson, I.C.; Singh, B.K. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 2018, 20, 124–140. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Garbeva, P.; Van Elsas, J.D.; Van Veen, J.A. Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 2008, 302, 19–32. [Google Scholar] [CrossRef]
- Singh, B.K.; Trivedi, P.; Egidi, E.; Macdonald, C.A.; Delgado-Baquerizo, M. Crop microbiome and sustainable agriculture. Nat. Rev. Microbiol. 2020, 18, 601–602. [Google Scholar] [CrossRef]
- Darriaut, R.; Antonielli, L.; Martins, G.; Ballestra, P.; Vivin, P.; Marguerit, E.; Mitter, B.; Masneuf-Pomarède, I.; Compant, S.; Ollat, N.; et al. Soil composition and rootstock genotype drive the root associated microbial communities in young grapevines. Front. Microbiol. 2022, 13, 1031064. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef]
- Gobbi, A.; Acedo, A.; Imam, N.; Santini, R.G.; Ortiz-Álvarez, R.; Ellegaard-Jensen, L.; Belda, I.; Hansen, L.H. A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs. Commun. Biol. 2022, 5, 241. [Google Scholar] [CrossRef] [PubMed]
- Powell, K. A Holistic Approach to Future Management of Grapevine Phylloxera; Springer: Dordrecht, The Netherlands, 2012; ISBN 9789400740327. [Google Scholar]
- Whiting, J. Grapevine rootstocks. Viticulture 2004, 1, 167–188. [Google Scholar]
- Keller, M.; Kummer, M.; Vasconcelos, M.C. Reproductive growth of grapevines in response to nitrogen supply and rootstock. Aust. J. Grape Wine Res. 2010, 7, 12–18. [Google Scholar] [CrossRef]
- Lecourt, J.; Lauvergeat, V.; Ollat, N.; Vivin, P.; Cookson, S.J. Shoot and root ionome responses to nitrate supply in grafted grape vines are rootstock genotype dependent. Aust. J. Grape Wine Res. 2015, 21, 311–318. [Google Scholar] [CrossRef]
- Habran, A.; Commisso, M.; Helwi, P.; Hilbert, G.; Negri, S.; Ollat, N.; Gomès, E.; van Leeuwen, C.; Guzzo, F.; Delrot, S. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front. Plant Sci. 2016, 7, 1134. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.-K.; Gao, X.-T.; He, L.; Yang, X.-H.; He, F.; Duan, C.-Q.; Wang, J. Rootstock-Mediated Effects on Cabernet Sauvignon Performance: Vine Growth, Berry Ripening, Flavonoids, and Aromatic Profiles. Int. J. Mol. Sci. 2019, 20, 401. [Google Scholar] [CrossRef] [PubMed]
- Zarraonaindia, I.; Owens, S.M.; Weisenhorn, P.; West, K.; Hampton-Marcell, J.; Lax, S.; Bokulich, N.A.; Mills, D.A.; Martin, G.; Taghavi, S.; et al. The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio 2015, 6, e02527-14. [Google Scholar] [CrossRef] [PubMed]
- Marasco, R.; Rolli, E.; Fusi, M.; Michoud, G.; Daffonchio, D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 2018, 6, 3. [Google Scholar] [CrossRef]
- Berlanas, C.; Berbegal, M.; Elena, G.; Laidani, M.; Cibriain, J.F.; Sagües, A.; Gramaje, D. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front. Microbiol. 2019, 10, 1142. [Google Scholar] [CrossRef]
- Dries, L.; Bussotti, S.; Pozzi, C.; Kunz, R.; Schnell, S.; Löhnertz, O.; Vortkamp, A. Rootstocks Shape Their Microbiome—Bacterial Communities in the Rhizosphere of Different Grapevine Rootstocks. Microorganisms 2021, 9, 822. [Google Scholar] [CrossRef]
- Vink, S.N.; Dini-Andreote, F.; Höfle, R.; Kicherer, A.; Salles, J.F. Interactive Effects of Scion and Rootstock Genotypes on the Root Microbiome of Grapevines (Vitis spp. L.). Appl. Sci. 2021, 11, 1615. [Google Scholar] [CrossRef]
- Marasco, R.; Alturkey, H.; Fusi, M.; Brandi, M.; Ghiglieno, I.; Valenti, L.; Daffonchio, D. Rootstock–scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environ. Microbiol. 2022, 24, 3791. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, S.; Fevereiro, P.; Kragler, F.; Pina, A. Plant grafting and graft incompatibility: A review from the grapevine perspective. Sci. Hortic. 2022, 299, 111019. [Google Scholar] [CrossRef]
- Moukarzel, R.; Ridgway, H.J.; Guerin-Laguette, A.; Jones, E.E. Grapevine rootstocks drive the community structure of arbuscular mycorrhizal fungi in New Zealand vineyards. J. Appl. Microbiol. 2021, 131, 2941–2956. [Google Scholar] [CrossRef] [PubMed]
- Moukarzel, R.; Ridgway, H.J.; Waller, L.; Guerin-Laguette, A.; Cripps-Guazzone, N.; Jones, E.E. Soil Arbuscular Mycorrhizal Fungal Communities Differentially Affect Growth and Nutrient Uptake by Grapevine Rootstocks. Microb. Ecol. 2022, 1–15. [Google Scholar] [CrossRef]
- De Santis, D.; Frangipane, M.T.; Brunori, E.; Cirigliano, P.; Biasi, R. Biochemical markers for enological potentiality in a grapevine aromatic variety under different soil types. Am. J. Enol. Vitic. 2017, 68, 100–111. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E. The on-farm conservation of grapevine (Vitis vinifera L.) landraces assures the habitat diversity in the viticultural agro-ecosystem. Vitis J. Grapevine Res. 2015, 54, 265–269. [Google Scholar]
- Brunori, E.; Cirigliano, P.; Biasi, R. Sustainable use of genetic resources: The characterization of an Italian local grapevine variety (Grechetto rosso’) and its own landscape. Vitis J. Grapevine Res. 2015, 54, 261–264. [Google Scholar]
- Cirigliano, P.; Biasi, R.; Cassi, F.; Di Francesco, G. Variables Hìdricas de los Suelos, Paràmetros Climàticos y Calidades de la uva Aleatico en Ambiente Volcànico de Italia Central. In Congresso Internazionale Sobre Clima y Viticoltura—Zaragoza (ES). 2007 10-14/04/2007. pp. 82–86. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000417039700008 (accessed on 10 January 2023).
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L.: The contribution of local knowledge. Plants 2019, 8, 121. [Google Scholar] [CrossRef]
- SIARL—Servizio Integrato Agrometeorologico della Regione Lazio. Available online: http://www.siarl-lazio.it (accessed on 15 October 2022).
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Higo, M.; Isobe, K.; Drijber, R.A.; Kondo, T.; Yamaguchi, M.; Takeyama, S.; Torigoe, Y. Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean. Biol. Fertil. Soils 2014, 50, 913–926. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Estimation of vesicular arbuscular mycorrhizal infection levels. Research for methods having a functional significance. In Physiological and Genetical Aspects of Mycorrhizae (Aspects Physiologiques et Genetiques des Mycorhizes), Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, Paris, France, 1–5 July 1985; Institut National de le Recherche Agronomique: Paris, France, 1985; p. c1986. [Google Scholar]
- Vierheilig, H.; Coughlan, A.P.; Wyss, U.R.S.; Piché, Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 1998, 64, 5004–5007. [Google Scholar] [CrossRef]
- XLSTAT. Statistical Software for Excel. 2007. Available online: www.xlstat.com (accessed on 15 December 2022).
- Chen, Q.L.; Ding, J.; Zhu, Y.G.; He, J.Z.; Hu, H.W. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environ. Int. 2020, 140, 105766. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; van der Heijden, M.G. Soil microbiomes and one health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, H.; Li, H. Arbuscular Mycorrhizal Fungi Improve Growth, Photosynthetic Activity, and Chlorophyll Fluorescence of Vitis vinifera L. cv. Ecolly under Drought Stress. Agronomy 2022, 12, 1563. [Google Scholar] [CrossRef]
- Lenoir, I.; Fontaine, J.; Sahraoui, A.L.H. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 2016, 123, 4–15. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Chang, Q.; Diao, F.W.; Wang, Q.F.; Pan, L.; Dang, Z.H.; Guo, W. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ. Pollut. 2018, 241, 607–615. [Google Scholar] [CrossRef]
- Wang, F.; Guo, W.; Ma, P.K.; Pan, L.; Zhang, J. Effects of Arbuscular mycorrhizal fungi on the growth and Ce uptake of maize grown in Ce-contaminated soils. Huan Jing Ke Xue = Huanjing Kexue (Environ. Sci.) 2016, 37, 309–316. [Google Scholar]
- Jansa, J.; Erb, A.; Oberholzer, H.R.; Šmilauer, P.; Egli, S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 2014, 23, 2118–2135. [Google Scholar] [CrossRef] [PubMed]
- Ciccolini, V.; Bonari, E.; Pellegrino, E. Land-use intensity and soil properties shape the composition of fungal communities in Mediterranean peaty soils drained for agricultural purposes. Biol. Fertil. Soils 2015, 51, 719–731. [Google Scholar] [CrossRef]
- Hazard, C.; Gosling, P.; Van Der Gast, C.J.; Mitchell, D.T.; Doohan, F.M.; Bending, G.D. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J. 2013, 7, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.C.; Silva, D.K.A.D.; Escobar, I.E.C.; Silva, J.M.D.; Moura, I.A.D.; Oehl, F.; Silva, G.A.D. Changes in an arbuscular mycorrhizal fungi community along an environmental gradient. Plants 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cai, L. Biochar and arbuscular mycorrhizal fungi play different roles in enabling maize to uptake phosphorus. Sustainability 2021, 13, 3244. [Google Scholar] [CrossRef]
- Carrenho, R.; Trufem, S.F.B.; Bononi, V.L.R.; Silva, E.S. The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Bot. Bras. 2007, 21, 723–730. [Google Scholar] [CrossRef]
- Kohler, J.; Roldán, A.; Campoy, M.; Caravaca, F. Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant Soil 2017, 410, 273–281. [Google Scholar] [CrossRef]
- Smith, S.E.; Facelli, E.; Pope, S.; Andrew Smith, F. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 2010, 326, 3–20. [Google Scholar] [CrossRef]
- Baslam, M.; Goicoechea, N. Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 2012, 22, 347–359. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, Y.; Chi, Y.; Zhou, L.; Chen, J.; Zhou, W.; Song, J.; Zhao, N.; Ding, J. Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ 2020, 8, e10046. [Google Scholar] [CrossRef]
- Nikolaou, N.; Angelopoulos, K.; Karagiannidis, N. Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet Sauvignon grapevine, grafted onto various rootstocks. Exp. Agric. 2003, 39, 241–252. [Google Scholar] [CrossRef]
- Pop-Moldovan, V.; Corcoz, L.; Stoian, V.; Moldovan, C.; Pleșa, A.; Vâtcă, S.; Vidican, R. Models of mycorrhizal colonization patterns and strategies induced by biostimulator treatments in Zea mays roots. Front. Plant Sci. 2022, 13, 1052066. [Google Scholar] [CrossRef] [PubMed]
- Brunori, E.; Bernardini, A.; Moresi, F.V.; Attorre, F.; Biasi, R. Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability. Plants 2022, 11, 3026. [Google Scholar] [CrossRef] [PubMed]
- Brigido, C.; Van Tuinen, D.; Brito, I.; Alho, L.; Goss, M.J.; Carvalho, M. Management of the biological diversity of AM fungi by combination of host plant succession and integrity of extraradical mycelium. Soil Biol. Biochem. 2017, 112, 237–247. [Google Scholar] [CrossRef]
- Bahadur, A.; Batool, A.; Nasir, F.; Jiang, S.; Mingsen, Q.; Zhang, Q.; Pan, J.; Liu, Y.; Feng, H. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 2019, 20, 4199. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, P.; Ortiz, N.; Becerra, N.; Turrini, A.; Gaínza-Cortés, F.; Silva-Flores, P.; Aguilar-Paredes, A.; Romero, J.K.; Jorquera-Fontena, E.; Mora, M.L.; et al. Application of arbuscular mycorrhizal fungi in vineyards: Water and biotic stress under a climate change scenario: New challenge for Chilean grapevine crop. Front. Microbiol. 2022, 13, 826571. [Google Scholar] [CrossRef] [PubMed]
Soil Chemical and Physical Parameters | AL-ORV | AL-420A | Signif. |
---|---|---|---|
Sand (%) | 53.35 | 48.55 | * |
Silt (%) | 34.55 | 44.05 | ** |
Clay (%) | 12.1 | 7.4 | ** |
TOC (%) | 2.49 | 2.63 | ns |
N (%) | 0.5 | 0.34 | ns |
C/N ratio | 4.7 | 7.27 | ** |
Bulk density (BD) | 0.93 | 0.93 | ns |
Soil water content at field capacity (SWFC %) | 22.46 | 27.51 | ** |
Soil water content at wilting point (SWW %) | 15.15 | 14.86 | ns |
Porosity (P %) | 65.01 | 64.65 | ns |
pH | 6.8 | 6.9 | ns |
Vineyards | MyCP | F | M | A | V |
---|---|---|---|---|---|
AL-ORV | 77.3 b | 90.0 ns | 73.4 b | 44.5 b | 16.9 a |
AL-420A | 86.7 a | 93.3 ns | 82.8 a | 54.0 a | 12.7 b |
CHL | gs | ||||||
---|---|---|---|---|---|---|---|
Phenological Stages | AL-ORV | AL_420A | Sign. | AL-ORV | AL_420A | Sign. | |
2021 | BBCH065 | 196.1 ± 22.3 | 173.5 ± 16.5 | ** | 214.9 ± 27.5 | 186.8 ± 24.2 | ** |
BBCH071 | 278.8 ± 37.0 | 230.7 ± 34.7 | ** | 425.9 ± 41.7 | 384.5 ± 56.5 | ** | |
BBCH079 | 288.7 ± 36.7 | 274.1 ± 54.0 | ns | 220.6 ± 46.2 | 186.6 ± 39.3 | ns | |
BBCH089 | 298.5 ± 36.4 | 317.5 ± 43.2 | ns | 178.3 ± 90.7 | 78.2 ± 62.9 | ** | |
2022 | BBCH065 | 305.6 ± 14.1 | 241.5 ± 16.1 | ** | 397.4 ± 65.5 | 365.5 ± 98.0 | ns |
BBCH071 | 395.2 ± 19.6 | 319.2 ± 16.1 | ** | 338.9 ± 12.1 | 321.1 ± 18.9 | ns | |
BBCH079 | 376.7 ± 16.1 | 32406 ± 11.2 | ** | 219.1 ± 60.4 | 208.3 ± 83.6 | ns | |
BBCH089 | 400.6 ± 17.0 | 346.8 ± 11.6 | ** | 201.1 ± 10.7 | 189.7 ± 10.9 | * |
Variables | Sand (%) | Loam (%) | Clay (%) | TOC (%) | N (%) | C/N Ratio | Bulk Density | Soil Water Content at Field Capacity (SWFC %) | Soil Water Content at Wilting Point (SWW %) | Porosity (%) | pH | MyCP (%) | F (%) | M (%) | A (%) | V (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand (%) | 1 | |||||||||||||||
Loam (%) | −0.92 | 1 | ||||||||||||||
Clay (%) | 0.30 | −0.66 | 1 | |||||||||||||
TOC (%) | −0.04 | 0.22 | −0.45 | 1 | ||||||||||||
N (%) | 0.017 | 0.04 | −0.13 | −0.30 | 1 | |||||||||||
C/N ratio | −0.36 | 0.55 | −0.63 | 0.70 | −0.52 | 1 | ||||||||||
Bulk density (BD) | −0.20 | 0.14 | 0.04 | −0.09 | 0.02 | −0,07 | 1 | |||||||||
Soil water content at field capacity (SWFC %) | −0.62 | 0.74 | −0.62 | 0.24 | 0.04 | 0.58 | 0.40 | 1 | ||||||||
Soil water content at wilting point (SWW %) | −0.17 | 0.07 | 0.15 | −0.20 | 0.18 | −0.28 | 0.42 | 0.20 | 1 | |||||||
Porosity (P %) | 0.17 | −0.11 | −0.05 | 0.09 | −0.13 | 0.13 | −0.54 | −0.25 | −0.75 | 1 | ||||||
pH | −0.15 | 0.25 | −0.31 | 0.56 | 0.02 | 0.41 | −0.22 | 0.14 | −0.08 | −0.01 | 1 | |||||
MyCP (%) | 0.14 | 0.05 | −0.38 | 0.19 | 0.08 | 0.34 | 0.04 | 0.21 | −0.36 | 0.05 | 0.47 | 1 | ||||
F (%) | 0.06 | 0.00 | −0.10 | −0.24 | 0.15 | −0.05 | −0.08 | −0.03 | −0.35 | −0.01 | 0.16 | 0.65 | 1 | |||
M(%) | 0.02 | 0.22 | −0.57 | 0.42 | −0.03 | 0.55 | −0.11 | 0.27 | −0.43 | 0.14 | 0.55 | 0.92 | 0.63 | 1 | ||
A(%) | −0.16 | 0.40 | −0.66 | 0.37 | 0.04 | 0.61 | −0.06 | 0.45 | −0.37 | 0.09 | 0.55 | 0.86 | 0.53 | 0.93 | 1 | |
V(%) | 0.39 | −0.59 | 0.69 | −0.08 | −0.27 | −0.372 | 0.08 | −0.58 | −0.157 | 0.18 | −0.05 | −0.05 | 0.13 | −0.09 | −0.21 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biasi, R.; Brunori, E.; Vanino, S.; Bernardini, A.; Catalani, A.; Farina, R.; Bruno, A.; Chilosi, G. Soil–Plant Interaction Mediated by Indigenous AMF in Grafted and Own-Rooted Grapevines under Field Conditions. Agriculture 2023, 13, 1051. https://doi.org/10.3390/agriculture13051051
Biasi R, Brunori E, Vanino S, Bernardini A, Catalani A, Farina R, Bruno A, Chilosi G. Soil–Plant Interaction Mediated by Indigenous AMF in Grafted and Own-Rooted Grapevines under Field Conditions. Agriculture. 2023; 13(5):1051. https://doi.org/10.3390/agriculture13051051
Chicago/Turabian StyleBiasi, Rita, Elena Brunori, Silvia Vanino, Alessandra Bernardini, Alessia Catalani, Roberta Farina, Antonio Bruno, and Gabriele Chilosi. 2023. "Soil–Plant Interaction Mediated by Indigenous AMF in Grafted and Own-Rooted Grapevines under Field Conditions" Agriculture 13, no. 5: 1051. https://doi.org/10.3390/agriculture13051051