Skip Content
You are currently on the new version of our website. Access the old version .
JCMJournal of Clinical Medicine
  • Article
  • Open Access

10 September 2019

Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study)

,
,
,
,
,
,
,
,
1
Nephrology, “A. Landolfi” Hospital, 83029 Solofra, Italy
2
Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
3
Department of Soil, Plant and Food Science, “Aldo Moro” University, Bari, Via G. Amendola 165/a, 70126 Bari, Italy
4
Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
This article belongs to the Special Issue Clinical Symptoms, Diagnostics and Treatments of Chronic Kidney Diseases (CKD)

Abstract

In chronic kidney disease (CKD), the gut-microbiota metabolites indoxyl sulfate (IS) and p-cresyl sulfate (PCS) progressively accumulate due to their high albumin-binding capacity, leading to clinical complications. In a prospective crossover controlled trial, 60 patients with CKD grades 3B–4 (GFR = 21.6 ± 13.2 mL/min) were randomly assigned to two dietary regimens: (i) 3 months of free diet (FD) (FD is the diet usually used by the patient before being enrolled in the Medika study), 6 months of very low protein diet (VLPD), 3 months of FD and 6 months of Mediterranean diet (MD); (ii) 3 months of FD, 6 months of MD, 3 months of FD, and 6 months of VLPD. VLPD reduced inflammatory Proteobacteria and increased Actinobacteria phyla. MD and VLPD increased some butyrate-forming species of Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bifidobacteriaceae, and decrease the pathobionts Enterobacteriaceae. The increased level of potential anti-inflammatory Blautia and Faecalibacterium, as well as butyrate-forming Coprococcus and Roseburia species in VLPD was positively associated with dietary intakes and it was negatively correlated with IS and PCS. Compared to FD and MD, VLPD showed a lower amount of some Lactobacillus, Akkermansia, Streptococcus, and Escherichia species. MD and VLPD reduced both the total and free serum IS (MD −36%, −40% and VLPD −69%, −73%, respectively) and PCS (MD −38%, −44% and VLPD −58%, −71%, respectively) compared to FD. VLPD reduced serum D-lactate compared to MD and FD. MD and, to a greater extent, VLPD are effective in the beneficial modulation of gut microbiota, reducing IS and PCS serum levels, and restoring intestinal permeability in CKD patients.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.