Single-Center Real-World Experience with Sutureless Aortic Valve Prosthesis in Isolated and Combined Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Inclusion Criteria
2.4. Outcomes and Definitions
2.5. Statistical Analysis
2.6. Surgical Techniques
3. Results
3.1. Procedure
3.2. Postoperative Outcomes and Survival
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiang, Y.P.; Chikwe, J.; Moskowitz, A.J.; Itagaki, S.; Adams, D.H.; Egorova, N.N. Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA 2014, 312, 1323–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.M.; O’Brien, S.M.; Wu, C.; Sikora, J.A.H.; Griffith, B.P.; Gammie, J.S. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: Changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 2009, 137, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, M.; Maeding, I.; Höffler, K.; Koigeldiyev, N.; Marsch, G.; Siemeni, T.; Fleissner, F.; Harverich, A. Aortic valve replacement in geriatric patients with small aortic roots: Are sutureless valves the future? Interact. Cardiovasc. Thorac. Surg. 2013, 17, 778–782; discussion 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashhour, A.; Zhigalov, K.; Mkalaluh, S.; Szczechowicz, M.; Easo, J.; Eichstaedt, H.C.; Weymann, A. Outcome of a Modified Perceval Implantation Technique. Thorac. Cardiovasc. Surg. 2020, 68, 602–607. [Google Scholar] [PubMed]
- Frilling, B.; Von Renteln-Kruse, W.; Riess, F.C. Evaluation of operative risk in elderly patients undergoing aortic valve replacement: The predictive value of operative risk scores. Cardiology 2010, 116, 213–218. [Google Scholar] [CrossRef]
- Wang, N.; Tsai, Y.C.; Niles, N.; Tchantchaleishvili, V.; Di Eusanio, M.; Yan, T.D.; Phan, K. Transcatheter aortic valve implantation (TAVI) versus sutureless aortic valve replacement (SUAVR) for aortic stenosis: A systematic review and meta-analysis of matched studies. J. Thorac. Dis. 2016, 8, 3283–3293. [Google Scholar] [CrossRef] [Green Version]
- Zubarevich, A.; Szczechowicz, M.; Amanov, L.; Arjomandi Rad, A.; Osswald, A.; Torabi, S.; Ruhparwar, A.; Weymann, A. Non-Inferiority of Sutureless Aortic Valve Replacement in the TAVR Era: David versus Goliath. Life 2022, 12, 979. [Google Scholar] [CrossRef]
- Phan, K.; Tsai, Y.C.; Niranjan, N.; Bouchard, D.; Carrel, T.P.; Dapunt, O.E.; Eichstaedt, H.C.; Fischlein, T.; Gersak, B.; Glauber, M.; et al. Sutureless aortic valve replacement: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2015, 4, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Phan, K.; Xie, A.; Tsai, Y.C.; Black, D.; Di Eusanio, M.; Yan, T.D. Ministernotomy or minithoracotomy for minimally invasive aortic valve replacement: A Bayesian network meta-analysis. Ann. Cardiothorac. Surg. 2015, 4, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Southworth, M.K.; Silva, J.R.; Silva, J.N.A. Use of extended realities in cardiology. Trends Cardiovasc. Med. 2020, 30, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Zubarevich, A.; Rad, A.A.; Amanov, L.; Szczechowicz, M.; Osswald, A.; Torabi, S.; Schmack, B.; Ruhparwar, A.; Weymann, A. Sutureless aortic valve replacement in pure aortic regurgitation: Expanding the indications. J. Cardiothorac. Surg. 2022, 17, 198. [Google Scholar] [CrossRef]
- Phan, K.; Xie, A.; Di Eusanio, M.; Yan, T.D. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Ann. Thorac. Surg. 2014, 98, 1499–1511. [Google Scholar] [CrossRef]
- Repossini, A.; Kotelnikov, I.; Bouchikhi, R.; Torre, T.; Passaretti, B.; Parodi, O.; Arena, V. Single-suture line placement of a pericardial stentless valve. J. Thorac. Cardiovasc. Surg. 2005, 130, 1265–1269. [Google Scholar] [CrossRef] [Green Version]
- Folliguet, T.A.; Laborde, F.; Zannis, K.; Ghorayeb, G.; Haverich, A.; Shrestha, M. Sutureless perceval aortic valve replacement: Results of two European centers. Ann. Thorac. Surg. 2012, 93, 1483–1488. [Google Scholar] [CrossRef]
- Wendt, D.; Thielmann, M.; Pizanis, N.; Jánosi, R.A.; Kamler, M.; Jakob, H. Sutureless aortic valves over the last 45 years. Minim. Invasive Ther. Allied Technol. MITAT Off. J. Soc. Minim. Invasive Ther. 2009, 18, 122–130. [Google Scholar] [CrossRef]
- Flameng, W.; Herregods, M.C.; Hermans, H.; Van der Mieren, G.; Vercalsteren, M.; Poortmans, G.; Van Hemelrijck, J.; Meuris, B. Effect of sutureless implantation of the Perceval S aortic valve bioprosthesis on intraoperative and early postoperative outcomes. J. Thorac. Cardiovasc. Surg. 2011, 142, 1453–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santarpino, G.; Pfeiffer, S.; Concistrè, G.; Fischlein, T. REDO aortic valve replacement: The sutureless approach. J. Heart Valve Dis. 2013, 22, 615–620. [Google Scholar]
- Dokollari, A.; Ramlawi, B.; Torregrossa, G.; Sá, M.P.; Sicouri, S.; Prifti, E.; Gelsomino, S.; Bonacchi, M. Benefits and Pitfalls of the Perceval Sutureless Bioprosthesis. Front. Cardiovasc. Med. 2021, 8, 789392. [Google Scholar] [CrossRef]
- D’Onofrio, A.; Rizzoli, G.; Messina, A.; Alfieri, O.; Lorusso, R.; Salizzoni, S.; Glauber, M.; Di Bartolomeo, R.; Besola, L.; Rinaldi, M.; et al. Conventional surgery, sutureless valves, and transapical aortic valve replacement: What is the best option for patients with aortic valve stenosis? A multicenter, propensity-matched analysis. J. Thorac. Cardiovasc. Surg. 2013, 146, 1065–1070, discussion 1070–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Eusanio, M.; Berretta, P. The sutureless and rapid-deployment aortic valve replacement international registry: Lessons learned from more than 4500 patients. Ann. Cardiothorac. Surg. 2020, 9, 289–297. [Google Scholar] [CrossRef]
- Glauber, M.; Moten, S.C.; Quaini, E.; Solinas, M.; Folliguet, T.A.; Meuris, B.; Miceil, A.; Oberwalder, P.J.; Rambaldini, M.; Teoh, K.H.T.; et al. International Expert Consensus on Sutureless and Rapid Deployment Valves in Aortic Valve Replacement Using Minimally Invasive Approaches. Innovations 2016, 11, 165–173. [Google Scholar] [CrossRef]
- Ramlawi, B.; Ramchandani, M.; Reardon, M.J. Surgical Approaches to Aortic Valve Replacement and Repair-Insights and Challenges. Interv. Cardiol. 2014, 9, 32–36. [Google Scholar] [CrossRef]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; Van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; Van Es, G.-A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. J. Thorac. Cardiovasc. Surg. 2013, 145, 6–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashhour, A.; Zhigalov, K.; Szczechowicz, M.; Mkalaluh, S.; Easo, J.; Eichstaedt, H.; Borodin, D.; Ennker, J.; Weymann, A. Snugger method—The Oldenburg modification of perceval implantation technique. World J. Cardiol. 2018, 10, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Zubarevich, A.; Szczechowicz, M.; Zhigalov, K.; Osswald, A.; Van den Eynde, J.; Arjomandi Rad, A.; Vardanyan, R.; Wendt, D.; Schmack, B.; Ruhparwar, A.; et al. Sutureless aortic valve replacement in multivalve procedures. J. Thorac. Dis. 2021, 13, 3392–3398. [Google Scholar] [CrossRef]
- Zubarevich, A.; Zhigalov, K.; Szczechowicz, M.; Thielmann, M.; Rabis, M.; Van den Eynde, J.; Sá, M.P.B.O.; Weissenberger, W.; Kadyraliev, B.; Enginoev, S.; et al. Simultaneous transaortic transcatheter aortic valve implantation and off-pump coronary artery bypass: An effective hybrid approach. J. Card. Surg. 2021, 36, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Zubarevich, A.; Rad, A.A.; Szczechowicz, M.; Ruhparwar, A.; Weymann, A. Sutureless aortic valve replacement in high-risk patients with active infective endocarditis. J. Thorac. Dis. 2022, 14, 3178–3186. [Google Scholar] [CrossRef]
- Zubarevich, A.; Szczechowicz, M.; Arjomandi Rad, A.; Amanov, L.; Ruhparwar, A.; Weymann, A. Conventional Biological versus Sutureless Aortic Valve Prostheses in Combined Aortic and Mitral Valve Replacement. Life 2023, 13, 737. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Lamberigts, M.; Szecel, D.; Rega, F.; Verbrugghe, P.; Dubois, C.; Meuris, B. Sutureless aortic valves in isolated and combined procedures: Thirteen years of experience in 784 patients. J. Thorac. Cardiovasc. Surg. 2022; in press. Available online: https://www.sciencedirect.com/science/article/pii/S0022522322010443(accessed on 20 April 2023).
- Salis, S.; Mazzanti, V.V.; Merli, G.; Salvi, L.; Tedesco, C.C.; Veglia, F.; Sisillo, E. Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2008, 22, 814–822. [Google Scholar] [CrossRef]
- Iino, K.; Miyata, H.; Motomura, N.; Watanabe, G.; Tomita, S.; Takemura, H.; Takamoto, S. Prolonged Cross-Clamping During Aortic Valve Replacement Is an Independent Predictor of Postoperative Morbidity and Mortality: Analysis of the Japan Cardiovascular Surgery Database. Ann. Thorac. Surg. 2017, 103, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Fischlein, T.; Caporali, E.; Asch, F.M.; Vogt, F.; Pollari, F.; Folliguet, T.; Kappert, U.; Meuris, B.; Shrestha, M.L.; Roselli, E.E.; et al. Hemodynamic Performance of Sutureless vs. Conventional Bioprostheses for Aortic Valve Replacement: The 1-Year Core-Lab Results of the Randomized PERSIST-AVR Trial. Front. Cardiovasc. Med. 2022, 9, 844876. Available online: https://www.frontiersin.org/articles/10.3389/fcvm.2022.844876 (accessed on 20 April 2023). [CrossRef] [PubMed]
- Concistrè, G.; Chiaramonti, F.; Bianchi, G.; Cerillo, A.; Murzi, M.; Margaryan, R.; Farneti, P.; Solinas, M. Aortic Valve Replacement With Perceval Bioprosthesis: Single-Center Experience With 617 Implants. Ann. Thorac. Surg. 2018, 105, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Matthews, I.G.; Fazal, I.A.; Bates, M.G.D.; Turley, A.J. In patients undergoing aortic valve replacement, what factors predict the requirement for permanent pacemaker implantation? Interact. Cardiovasc. Thorac. Surg. 2011, 12, 475–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, K.Y.; Reardon, M.J.; Yakubov, S.J.; Modine, T.; Fremes, S.; Tonino, P.A.L.; Tan, M.E.; Gleason, T.G.; Harrison, J.K.; Hughes, G.C.; et al. Surgical Sutureless and Sutured Aortic Valve Replacement in Low-risk Patients. Ann. Thorac. Surg. 2022, 113, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Berretta, P.; Meuris, B.; Kappert, U.; Andreas, M.; Fiore, A.; Solinas, M.; Misfeld, M.; Carrel, T.P.; Villa, E.; Savini, C.; et al. Sutureless Versus Rapid Deployment Aortic Valve Replacement: Results From a Multicenter Registry. Ann. Thorac. Surg. 2022, 114, 758–765. [Google Scholar] [CrossRef]
- Meuris, B.; Flameng, W.J.; Laborde, F.; Folliguet, T.A.; Haverich, A.; Shrestha, M. Five-year results of the pilot trial of a sutureless valve. J. Thorac. Cardiovasc. Surg. 2015, 150, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Fischlein, T.; Meuris, B.; Flameng, W.; Carrel, T.; Madonna, F.; Misfeld, M.; Folliguet, T.; Haverich, A.; Laborde, F. European multicentre experience with the sutureless Perceval valve: Clinical and haemodynamic outcomes up to 5 years in over 700 patients. Eur. J. Cardio-Thorac. Surg. 2016, 49, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Szecel, D.; Lamberigts, M.; Rega, F.; Verbrugghe, P.; Dubois, C.; Meuris, B. Avoiding oversizing in sutureless valves leads to lower transvalvular gradients and less permanent pacemaker implants postoperatively. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac157. [Google Scholar] [CrossRef]
- Vogt, F.; Pfeiffer, S.; Dell’Aquila, A.M.; Fischlein, T.; Santarpino, G. Sutureless aortic valve replacement with Perceval bioprosthesis: Are there predicting factors for postoperative pacemaker implantation? Interact. Cardiovasc. Thorac. Surg. 2016, 22, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Fabre, O.; Radutoiu, M.; Carjaliu, I.; Rebet, O.; Gautier, L.; Hysi, I. Recent improvement in operative techniques lead to lower pacemaker rate after Perceval implant. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac182. [Google Scholar] [CrossRef] [PubMed]
- Glauber, M.; Di Bacco, L.; Cuenca, J.; Di Bartolomeo, R.; Baghai, M.; Zakova, D.; Fischlein, T.; Troise, G.; Viganò, G.; Solinas, M. Minimally Invasive Aortic Valve Replacement with Sutureless Valves: Results From an International Prospective Registry. Innovations 2020, 15, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Ellouze, M.; Mazine, A.; Carrier, M.; Bouchard, D. Sutureless and Transcatheter Aortic Valve Replacement: When Rivals Become Allies. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 427–430. [Google Scholar] [CrossRef]
Clinical Variable | Overall (n = 200) | Isolated AVR (n = 85) | AVR + CABG (n = 75) | Multivalve Procedures (n = 40) |
---|---|---|---|---|
Age, years | 69.3 ± 8.1 | 66.6 ± 7.5 | 71.2 ± 7.3 | 71.5 ± 9.3 |
Female sex | 73 (36.5%) | 34 (17%) | 19 (9.5%) | 20 (10%) |
BMI, kg/qm | 28.4 ± 5.7 | 28.9 ± 6.0 | 28.4 ± 5.5 | 27.1 ± 5.6 |
Previous cardiac surgery | 18 (9%) | 12 (6%) | 1 (0.5%) | 5 (2.5%) |
Diabetes mellitus type 2 | 61 (30.5%) | 24 (12%) | 26 (13%) | 11 (5.5%) |
Arterial hypertension | 183 (91.5%) | 73 (36.5%) | 73 (36.5%) | 37 (18.5%) |
Pulmonal hypertension (sysPAP > 31 mmHg) | 36 (18%) | 8 (4%) | 14 (7%) | 14 (7%) |
Cronic obstructive lung disease | 31 (15.5%) | 11 (5.5%) | 13 (6.5%) | 7 (3.5%) |
Previous stroke | 12 (6%) | 6 (3%) | 3 (1.5%) | 3 (1.5%) |
Coronary arterial disease | 122 (61%) | 30 (15%) | 75 (37.5%) | 17 (8.5%) |
Previous PCI | 31 (15.5%) | 11 (5.5%) | 14 (7%) | 6 (3%) |
Atrial fibrillation | 47 (23.5%) | 18 (9%) | 14 (7%) | 15 (7.5%) |
Permanent | 13 (6.5%) | 4 (2%) | 4 (2%) | 5 (2.5%) |
Paroxysmal | 34 (17%) | 14 (7%) | 10 (5%) | 10 (5%) |
Kidney function impairment | 43 (21.5%) | 16 (8%) | 14 (7%) | 13 (6.5%) |
Creatinine, g/dL | 1.3 ± 1.2 | 1.2 ± 1.1 | 1.4 ± 1.3 | 1.5 ± 1.3 |
EuroSCORE II, % | 5.2 ± 8.1 | 1.9 (IQR 2.4–5.0) | 2.7 (IQR 2.8–4.1) | 5.7 (IQR 7.2–16.0) |
Urgency | ||||
Elective | 163 (81.5%) | 70 (35%) | 64 (32%) | 26 (13%) |
Urgent | 28 (14%) | 11 (5.5%) | 9 (4.5%) | 8 (4%) |
Emergent | 9 (4.5%) | 2 (1%) | 2 (1%) | 5 (2.5%) |
EF, % | 53.2 ± 9.5 | 54.9 ± 10.1 | 53.2 ± 8.6 | 49.3 ± 8.9 |
Aortic stenosis > II° | 163 (81.5%) | 69 (34.5%) | 71 (35.5%) | 23 (11.5%) |
Aortic regurgitation > II° | 42 (21%) | 18 (9%) | 8 (4%) | 16 (8%) |
AV-mean pressure gradient, mmHg | 42.2 ± 15.7 | 43.9 ± 15.2 | 44.4 ± 15.5 | 34.4 ± 15.7 |
Mitral stenosis > II° | 16 (8%) | 1 (0.5%) | 4 (2%) | 11 (5.5%) |
Mitral regurgitation > II° | 30 (15%) | 0 | 0 | 30 (15%) |
Tricuspidal regurgitation >II° | 10 (5%) | 1 (0.5%) | 0 | 9 (4.5%) |
TAPSE, mm | 21.9 ± 3.0 | 22.3 ± 3.1 | 22.4 ± 2.3 | 20.0 ± 3.3 |
Variable | Overall (n = 200) | Isolated AVR (n = 85) | AVR + CABG (n = 75) | Multivalve Procedures (n = 40) |
---|---|---|---|---|
Median sternotomy | 167 (83.5%) | 52 (26%) | 75 (37.5%) | 40 (20%) |
Minimally invasive approach | 33 (16.5%) | 33 (16.5%) | 0 | 0 |
J-sternotomy | 21 (10.5%) | 21 (10.5%) | 0 | 0 |
RALT | 12 (6%) | 34 (17%) | 19 (9.5%) | 20 (10%) |
Perceval size | ||||
S | 15 (7.5%) | 3 (1.5%) | 6 (3%) | 6 (3%) |
M | 44 (22%) | 19 (9.5%) | 10 (5%) | 15 (7.5%) |
L | 75 (37.5%) | 30 (15%) | 32 (16%) | 13 (6.5%) |
XL | 66 (33%) | 33 (16.5%) | 27 (13.5%) | 6 (3%) |
Operating time, min | 138.1 ± 46.4 | 111.4 ± 34.7 | 152.1 ± 43.7 | 168.4 ± 43.4 |
CPB time, min | 82.1 ± 35.1 | 63.5 ± 25.3 | 86.9 ± 29.0 | 112.8 ± 39.0 |
CC time, min | 55.5 ± 27.8 | 39.4 ± 17.8 | 59.5 ± 18.9 | 82.0 ± 35.5 |
Implant dislocation | 1 (0.5%) | 1 (0.5%) | 0 | 0 |
Intraoperative blood transfusion, U | 1.7 ± 1.8 | 0 (IQR 0.8–1.5) | 2 (IQR 1.3–2.0) | 2 (IQR 2.0–3.4) |
Concomitant procedure | ||||
CABG | 85 (42.5%) | 0 | 74 (37%) | 11 (5.5%) |
LAA closure | 8 (4%) | 1 (0.5%) | 4 (2%) | 3 (1.5%) |
TVR | 11 (5.5%) | 0 | 0 | 11 (5.5%) |
MV replacement | 20 (10%) | 0 | 0 | 20 (10%) |
MV repair | 20 (10%) | 0 | 0 | 20 (10%) |
Myectomy | 15 (7.5%) | 8 (4%) | 4 (2%) | 3 (1.5%) |
Variable | Overall (n = 200) | Isolated AVR (n = 85) | AVR + CABG (n = 75) | Multivalve Procedures (n = 40) |
---|---|---|---|---|
ICU length of stay, days | 2 (IQR 1–4) | 2 (IQR 2.0–3.4) | 2 (IQR 2.5–4.9) | 3 (IQR 3.1–6.9) |
In-hospital stay, days | 9.1 ± 4.6 | 8.8 ± 4.0 | 9.5 ± 4.5 | 8.9 ± 5.9 |
Time on ventilator, days | 1 (IQR 0.5–1) | 1 (IQR 0.7–1.7) | 1 (IQR 0.9–3.0) | 1 (IQR 1.0–4.2) |
procedural death | 0 | 0 | 0 | 0 |
In-hospital death | 9 (4.5%) | 0 | 1 (0.5%) | 8 (4%) |
30-day mortality | 6.5% | 2.4% | 4% | 20% |
6-month mortality | 7.5% | 2.4% | 4% | 25% |
1-year mortality | 8.2% | 4% | 4% | 25% |
Pacemaker at 30 days | 8 (4%) | 3 (1.5%) | 1 (0.5%) | 4 (2%) |
Exploration for bleeding | 14 (7%) | 7 (3.5%) | 5 (2.5%) | 2 (1%) |
Stroke/TIA | 1 (0.5%) | 0 | 1 (0.5%) | 0 |
New-onset dialysis | 17 (8.5%) | 3 (1.5%) | 5 (2.5%) | 9 (4.5%) |
AV-MPG at discharge, mmHg | 6.3 ± 1.6 | 6.2 ± 1.8 | 6.2 ± 1.5 | 6.6 ± 1.1 |
PVL at discharge | 0 | 0 | 0 | 0 |
AV-MPG at follow-up, mmHg | 5.9 ± 2.2 | 6.2 ± 1.9 | 5.9 ± 2.0 | 5.3 ± 2.9 |
PVL at follow-up | 0 | 0 | 0 | 0 |
LVF at follow-up | ||||
Normal (EF > 50%) | 137 (68.5%) | 68 (34%) | 50 (25%) | 19 (9.5%) |
Moderate (EF 31–50%) | 52 (26%) | 11 (5.5%) | 23 (11.5%) | 18 (9%) |
Poor (EF < 30%) | 11 (5.5%) | 6 (3%) | 2 (1%) | 3 (1.5%) |
Re-operation at follow-up | 1(0.5%) | 1 (0.5%) | 0 | 0 |
Endocarditis at follow-up | 1(0.5%) | 1 (0.5%) | 0 | 0 |
Follow-up time, days | 549.5 ± 465.0 | 529.6 ± 348.3 | 577.5 ± 593.3 | 539.3 ± 414.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubarevich, A.; Amanov, L.; Arjomandi Rad, A.; Beltsios, E.T.; Szczechowicz, M.; Osswald, A.; Ruhparwar, A.; Weymann, A. Single-Center Real-World Experience with Sutureless Aortic Valve Prosthesis in Isolated and Combined Procedures. J. Clin. Med. 2023, 12, 4163. https://doi.org/10.3390/jcm12124163
Zubarevich A, Amanov L, Arjomandi Rad A, Beltsios ET, Szczechowicz M, Osswald A, Ruhparwar A, Weymann A. Single-Center Real-World Experience with Sutureless Aortic Valve Prosthesis in Isolated and Combined Procedures. Journal of Clinical Medicine. 2023; 12(12):4163. https://doi.org/10.3390/jcm12124163
Chicago/Turabian StyleZubarevich, Alina, Lukman Amanov, Arian Arjomandi Rad, Eleftherios T. Beltsios, Marcin Szczechowicz, Anja Osswald, Arjang Ruhparwar, and Alexander Weymann. 2023. "Single-Center Real-World Experience with Sutureless Aortic Valve Prosthesis in Isolated and Combined Procedures" Journal of Clinical Medicine 12, no. 12: 4163. https://doi.org/10.3390/jcm12124163
APA StyleZubarevich, A., Amanov, L., Arjomandi Rad, A., Beltsios, E. T., Szczechowicz, M., Osswald, A., Ruhparwar, A., & Weymann, A. (2023). Single-Center Real-World Experience with Sutureless Aortic Valve Prosthesis in Isolated and Combined Procedures. Journal of Clinical Medicine, 12(12), 4163. https://doi.org/10.3390/jcm12124163