Next Article in Journal
Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)
Next Article in Special Issue
Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells
Previous Article in Journal / Special Issue
Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N-Tetraethylene Glycol Dimethyl Ether
Article Menu

Export Article

Open AccessArticle
Membranes 2013, 3(4), 311-330; doi:10.3390/membranes3040311

Testing the Chemical/Structural Stability of Proton Conducting Perovskite Ceramic Membranes by in Situ/ex Situ Autoclave Raman Microscopy

Laboratory of Dynamics, Interactions and Reactivity (LADIR), UMR7075 CNRS, Université Pierre et Marie Curie, 4 Pl. Jussieu, Paris 75005, France
Department of Materials, Imperial College London, London SW7 2AZ, UK
Department of Physics, Northern Illinois University, DeKalb, IL 60115, USA
AREVA NP, Université Montpellier 2, Montpellier 34095, France
Author to whom correspondence should be addressed.
Received: 1 August 2013 / Revised: 7 October 2013 / Accepted: 17 October 2013 / Published: 25 October 2013
(This article belongs to the Special Issue Advancements in Membranes for Electrochemical Energy Applications)
View Full-Text   |   Download PDF [1087 KB, uploaded 25 October 2013]   |  


Ceramics, which exhibit high proton conductivity at moderate temperatures, are studied as electrolyte membranes or electrode components of fuel cells, electrolysers or CO2 converters. In severe operating conditions (high gas pressure/high temperature), the chemical activity towards potentially reactive atmospheres (water, CO2, etc.) is enhanced. This can lead to mechanical, chemical, and structural instability of the membranes and premature efficiency loss. Since the lifetime duration of a device determines its economical interest, stability/aging tests are essential. Consequently, we have developed autoclaves equipped with a sapphire window, allowing in situ Raman study in the 25–620 °C temperature region under 1–50 bar of water vapor/gas pressure, both with and without the application of an electric field. Taking examples of four widely investigated perovskites (BaZr0.9Yb0.1O3−δ, SrZr0.9Yb0.1O3−δ, BaZr0.25In0.75O3−δ, BaCe0.5Zr0.3Y0.16Zn0.04O3−δ), we demonstrate the high potential of our unique set-up to discriminate between good/stable and instable electrolytes as well as the ability to detect and monitor in situ: (i) the sample surface reaction with surrounding atmospheres and the formation of crystalline or amorphous secondary phases (carbonates, hydroxides, hydrates, etc.); and (ii) the structural modifications as a function of operating conditions. The results of these studies allow us to compare quantitatively the chemical stability versus water (corrosion rate from ~150 µm/day to less than 0.25 µm/day under 200–500 °C/15–80 bar PH2O) and to go further in comprehension of the aging mechanism of the membrane. View Full-Text
Keywords: perovskite; proton conductor; ceramic; autoclave; TGA; IR; Raman; in situ perovskite; proton conductor; ceramic; autoclave; TGA; IR; Raman; in situ

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Slodczyk, A.; Zaafrani, O.; Sharp, M.D.; Kilner, J.A.; Dabrowski, B.; Lacroix, O.; Colomban, P. Testing the Chemical/Structural Stability of Proton Conducting Perovskite Ceramic Membranes by in Situ/ex Situ Autoclave Raman Microscopy. Membranes 2013, 3, 311-330.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Membranes EISSN 2077-0375 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top