Membranes 2011, 1(1), 80-90; doi:10.3390/membranes1010080
Article

Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up

1email, 1email, 2email and 1,* email
Received: 24 January 2011; in revised form: 24 February 2011 / Accepted: 25 February 2011 / Published: 3 March 2011
(This article belongs to the Special Issue Selected Papers from the AMS6/IMSTEC10 Conference)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs) (toluene-propylene-butadiene) from air was performed using a poly dimethyl siloxane (PDMS)/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10−4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID). The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.
Keywords: vapor permeation; PDMS VOC recovery; air treatment
PDF Full-text Download PDF Full-Text [280 KB, uploaded 3 March 2011 12:40 CET]

Export to BibTeX |
EndNote


MDPI and ACS Style

Rebollar-Perez, G.; Carretier, E.; Lesage, N.; Moulin, P. Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up. Membranes 2011, 1, 80-90.

AMA Style

Rebollar-Perez G, Carretier E, Lesage N, Moulin P. Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up. Membranes. 2011; 1(1):80-90.

Chicago/Turabian Style

Rebollar-Perez, Georgette; Carretier, Emilie; Lesage, Nicolas; Moulin, Philippe. 2011. "Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up." Membranes 1, no. 1: 80-90.

Membranes EISSN 2077-0375 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert