Polarization Properties of Laser Solitons
Abstract
:1. Introduction
2. Materials and Method
- : Horizontally polarized component of the intensity.
- : Vertically polarized component of the intensity
- : Intensity component diagonally polarized.
- : Circular component of the emission. In this case, a QWP is used in addition to the linear polarizer. including the factor associated with this component, the Stokes parameters are calculated from the following set of equations:where represents the total intensity; the degree of horizontally (positive values of ) or vertically (negative values of ) polarized light; in the same way, accounts for the polarization degree across the diagonals (positive for , negative for ); and represents the degree of circular polarization (the sign denotes the direction of rotation). Furthermore, two additional calculations have been done—the fractional polarization (FP):in order to ensure the validity of our results, they are checked against the ideal value of 1, corresponding to the radius of the Poincare sphere.
3. Results
3.1. Single Soliton Case. The Cavity Soliton
3.2. The Ring-Shaped Structure. The Optical Vortex Beam
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leo, F.; Coen, S.; Kockaert, P.; Gorza, S.-P.; Emplit, P.; Haelterman, M. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 2010, 4, 471–476. [Google Scholar] [CrossRef]
- Schapers, B.; Feldmann, M.; Ackemann, T.; Lange, W. Interaction of localized structures in an optical pattern-forming system. Phys. Rev. Lett. 2000, 85, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Firth, W.J.; Weiss, C.O. Cavity and feedback solitons. Opt. Photonics News 2002, 13, 54–58. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankhiewicz, A. (Eds.) Dissipative Solitons; Lecture Notes in Physics; Springer: Berlin, Germany, 2005; Volume 336. [Google Scholar]
- Bazhenov, V.Y.; Taranenko, V.B.; Vasnetsov, M.V. Transverse optical effects in bistable active cavity with nonlinear absorber on bacteriorhodopsin. Proc. SPIE 1992, 1840, 183–193. [Google Scholar]
- Odent, V.; Tlidi, M.; Clerc, M.G.; Glorieux, P.; Louvergneaux, E. Experimental observation of front propagation in a negatively diffractive inhomogeneous kerr cavity. Phys. Rev. A 2014, 90, 011806. [Google Scholar] [CrossRef]
- Schreiber, A.; Thüring, B.; Kreuzer, M.; Tschudi, T. Experimental investigation of solitary structures in a nonlinear optical feedback system. Opt. Commun. 1997, 136, 415–418. [Google Scholar] [CrossRef]
- Radwell, N.; Ackemann, T. Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating. IEEE J. Quantum Electron. Phys. Lett. 2009, 45, 1388–1395. [Google Scholar] [CrossRef]
- Wilmsen, C.; Temkin, H.; Coldren, L. (Eds.) Vertical-Cavity Surface-Emitting Lasers. Design, Fabrication, Characterization and Applications; Cambridge Studies in Modern Optics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Michalzik, R. (Ed.) VCSEL’s: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers; Springer Series in Optical Sciences; Springer: Berlin, Germany, 2013. [Google Scholar]
- Webb, C.; Jones, J. (Eds.) Handbook of Laser Technology and Applications. Volume II: Laser Design and Laser Applications; Institute of Physics Publishing: Bristol, UK, 2004. [Google Scholar]
- Jimenez, J.; Noblet, Y.; Paulau, P.V.; Gomila, D.; Ackemann, T. Observation of laser vortex solitons in a self-focusing semiconductor laser. J. Opt. 2013, 15, 044011. [Google Scholar] [CrossRef]
- Jimenez, J.; Oppo, G.-L.; Ackemann, T. Temperature dependence of spontaneous switch-on and switch-off of laser cavity solitons in vertical-cavity surface-emitting lasers with frequency-selective feedback. J. Phys. D 2016, 49, 095110. [Google Scholar] [CrossRef]
- Averlant, E.; Tlidi, M.; Thienpont, H.; Ackemann, T.; Panajotov, K. Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers. Sci. Rep. 2016, 6, 20428. [Google Scholar] [CrossRef] [PubMed]
- Beckley, A.M.; Brown, T.G.; Alonso, M.A. Full Poincare Beams. Opt. Exp. 2010, 18, 10777–10785. [Google Scholar] [CrossRef] [PubMed]
- Grabher, M.; Jager, R.; Miller, M.; Thalmaier, C.; Herlein, J.; Ebeling, K.J. Bottom emitting VCSELs for High-CW optical output power. IEEE Photonics Technol. Lett. 1998, 10, 1061–1603. [Google Scholar] [CrossRef]
- Hecht, E. Optics; Pearson Education Ltd.: Harlow, UK, 2012. [Google Scholar]
- Brambilla, M.; Lugiato, L.A.; Prati, F.; Spinelli, L.; Firth, W. Spatial soliton pixels in semiconductor devices. Phys. Rev. Lett. 1997, 79, 2042–2045. [Google Scholar] [CrossRef]
- Barland, S.; Tredicce, J.R.; Brambilla, M.; Lugiato, L.A.; Balle, S.; Guidici, M.; Maggipinto, T.; Spinelli, L.; Tissoni, G.; Knodel, T.; et al. Cavity solitons as pixels in semiconductors. Nature 2002, 419, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Firth, W.J.; Scroggie, A.J. Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity. Phys. Rev. Lett. 1996, 76, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Panajotov, K.; Prati, F. Polarization Dynamics in VCSELs; Chapter 6 in “VCSEL’s: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers”; Springer Series in Optical Sciences; Springer: Berlin, Germany, 2013. [Google Scholar]
- San Miguel, M.; Feng, Q.; Moloney, J.V. Light polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 1995, 52, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Nye, J.F.; Berry, M.V. Dislocations in wave trains. Proc. R. Soc. A 1974, 336. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Ostrovskaya, E.A. Optical vortices: Folding and twisting waves of light. Opt. Photonics News 2001, 12, 24–28. [Google Scholar] [CrossRef]
- Genevet, P.; Barland, S.; Giudici, M.; Tredicce, J.R. Bistable and Addressable Localized Vortices in Semiconductor Lasers. Phys. Rev. Lett. 2010, 104, 223902. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B.A. Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau equation. Phys. Rev. A 2008, 77, 033817. [Google Scholar] [CrossRef]
- Paulau, P.V.; Gomila, D.; Colet, P.; Loiko, N.A.; Rosanov, N.N.; Ackemann, T.; Firth, W.J. Vortex solitons in lasers with feedback. Opt. Express 2010, 18, 8859–8866. [Google Scholar] [CrossRef] [PubMed]
- Paulau, P.V.; Gomila, D.; Colet, P.; Malomed, B.A.; Firth, W.J. From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback. Phys. Rev. E 2011, 84, 036213. [Google Scholar] [CrossRef] [PubMed]
- Desyatnikov, A.S.; Sukhorukov, A.A.; Kivshar, Y.S. Azimuthons: Spatially Modulated Vortex Solitons. Phys. Rev. Lett. 2005, 95, 203904. [Google Scholar] [CrossRef] [PubMed]
- Minovich, A.; Neshev, D.N.; Desyatnikov, A.S.; Krolikowski, W.; Kivshar, Y.S. Observation of optical azimuthons. Opt. Express 2009, 17, 23610–23616. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, S.V.; Rosanov, N.N.; Shatsev, A.N.; Veretenov, N.A.; Vladimorov, A.G. Topologically multicharged and multihumped rotating solitons in wide-aperture lasers with a saturable absorber. IEEE J. Quantum Electron. 2003, 39, 197–205. [Google Scholar] [CrossRef]






© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, P.; Jimenez, J.; Guillet, T.; Ackemann, T. Polarization Properties of Laser Solitons. Appl. Sci. 2017, 7, 442. https://doi.org/10.3390/app7050442
Rodriguez P, Jimenez J, Guillet T, Ackemann T. Polarization Properties of Laser Solitons. Applied Sciences. 2017; 7(5):442. https://doi.org/10.3390/app7050442
Chicago/Turabian StyleRodriguez, Pedro, Jesus Jimenez, Thierry Guillet, and Thorsten Ackemann. 2017. "Polarization Properties of Laser Solitons" Applied Sciences 7, no. 5: 442. https://doi.org/10.3390/app7050442
APA StyleRodriguez, P., Jimenez, J., Guillet, T., & Ackemann, T. (2017). Polarization Properties of Laser Solitons. Applied Sciences, 7(5), 442. https://doi.org/10.3390/app7050442

