Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine?
Abstract
Simple Summary
Abstract
1. Introduction
2. Method
2.1. Protocol
2.2. Data Processing and Analysis
3. Results
3.1. Hoof Measurements
3.2. Medio-Lateral Variation
3.3. Centre of Pressure
3.4. Measurement Correlations
4. Discussion
Limitations
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Oosterlinck, M.; Hardeman, L.C.; van der Meij, B.R.; Veraa, S.; van der Kolk, J.H.; Wijnberg, I.D.; Pille, F.; Back, W. Pressure plate analysis of toe-heel and medio-lateral hoof balance at the walk and trot in sound sport horses. Vet. J. 2013, 198, e9–e13. [Google Scholar] [CrossRef] [PubMed]
- Dyson, S.J.; Tranquille, C.A.; Collins, S.N.; Parkin, T.D.H.; Murray, R.C. An investigation of the relationships between angles and shapes of the hoof capsule and the distal phalanx. Equine Vet. J. 2011, 43, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.M. Adams and Stashak’s Lameness in Horses, 6th ed.; Baxter, G.M., Ed.; John Wiley & Sons: Oxford, UK, 2011. [Google Scholar]
- Van Heel, M.C.V.; Moleman, M.; Barneveld, A.; Van Weeren, P.R.; Back, W. Changes in location of centre of pressure and hoof-unrollment pattern in relation to an 8-week shoeing interval in the horse. Equine Vet. J. 2005, 37, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Ducro, B.J.; Gorissen, B.; van Eldik, P.; Back, W. Influence of foot conformation on duration of competitive life in a Dutch Warmblood horse population. Equine Vet. J. 2009, 41, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Moleman, M.; van Heel, M.C.V.; van Weeren, P.R.; Back, W. Hoof growth between two shoeing sessions leads to a substantial increase of the moment about the distal, but not the proximal, interphalangeal joint. Equine Vet. J. 2006, 38, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Senden, A.I.P. A Comparison between Unshod and Shod Front Hooves of Thoroughbreds and the Effect of Trimming. Master’s Thesis, Utrecht University, Utrecht, The Neherlands, 2009. [Google Scholar]
- Kummer, M.; Geyer, H.; Imboden, I.; Auer, J.; Lischer, C. The effect of hoof trimming on radiographic measurements of the front feet of normal Warmblood horses. Vet. J. 2006, 172, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Van Heel, M.C.V.; Kroekenstoel, A.M.; van Dierendonck, M.C.; van Weeren, P.R.; Back, W. Uneven feet in a foal may develop as a consequence of lateral grazing behaviour induced by conformational traits. Equine Vet. J. 2006, 38, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Elishar, E.; McGuigan, M.P.; Wilson, A.M. Relationship of foot conformation and force applied to the navicular bone of sound horses at the trot. Equine Vet. J. 2004, 36, 431–435. [Google Scholar] [CrossRef]
- Page, B.T.; Hagan, T.L. Breakover of the hoof and its effect on structures and forces within the foot. J. Equine Vet. Sci. 2002, 22, 258–264. [Google Scholar] [CrossRef]
- Duberstein, K.J.; Johnson, E.L.; Whitehead, A. Effects of shortening breakover at the toe on gait kinematics at the walk and trot. J. Equine Vet. Sci. 2013, 33, 930–936. [Google Scholar] [CrossRef]
- O’Grady, S.E. Therapeutic Shoes: Application of Principles. In Equine Laminitis; Belknap, J.K., Geor, R.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; p. 343. [Google Scholar]
- Parks, A. Foot balance and conformation: Clinical perspectives. J. Equine Vet. Sci. 2005, 25, 230. [Google Scholar] [CrossRef]
- Johnston, C.; Back, W. Hoof ground interaction: When biomechanical stimuli challenge the tissues of the distal limb. Equine Vet. J. 2006, 38, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Floyd, A.; Mansmann, R. Equine Podiatry; Elsevier Health Sciences: Philidelphia, PA, USA, 2007; p. 480. [Google Scholar]
- Van Heel, M.C.V.; Barneveld, A.; van Weeren, P.R.; Back, W. Dynamic pressure measurements for the detailed study of hoof balance: The effect of trimming. Equine Vet. J. 2004, 36, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.H.; McDonald, K.; O’Connell, M.J. Skeletal forelimb measurements and hoof spread in relation to asymmetry in the bilateral forelimb of horses. Equine Vet. J. 2009, 41, 238–241. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Labens, R.; Redding, W.R.; Desai, K.K.; Vom Orde, K.; Mansmann, R.A.; Blikslager, A.T. Validation of a photogrammetric technique for computing equine hoof volume. Vet. J. 2013, 197, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Hood, D.M.; Wagner, I.P. Short-term effect of therapeutic shoeing on severity of lameness in horses with chronic laminitis. Am. J. Vet. Res. 2002, 63, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- White, J.M.; Mellor, D.J.; Duz, M.; Lischer, C.J.; Voute, L.C. Diagnostic accuracy of digital photography and image analysis for the measurement of foot conformation in the horse. Equine Vet. J. 2008, 40, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Dyson, S.J.; Tranquille, C.A.; Collins, S.N.; Parkin, T.D.H.; Murray, R.C. External characteristics of the lateral aspect of the hoof differ between non-lame and lame horses. Vet. J. 2011, 190, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Gray, S.; Kaiser, L.J.; Bowker, R.M. Effects of barefoot trimming on hoof morphology. Aust. Vet J. 2011, 89, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Kroekenstoel, A.M.; Heel, M.C.V.; Weeren, P.R.; Back, W. Developmental aspects of distal limb conformation in the horse: The potential consequences of uneven feet in foals. Equine Vet. J. 2006, 38, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.M. A study of 118 cases of navicular disease: Clinical features. Equine Vet. J. 1993, 25, 488–492. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, S.E.; Poupard, D.A. Physiological horseshoeing: An overview. Equine Vet Educ. 2001, 13, 330–334. [Google Scholar] [CrossRef]
- Gill, D.W. Farriery: The Whole Horse Concept: The Enigmas of Hoof Balance Made Clear; Nottingham University Press: Notingham, UK, 2007. [Google Scholar]
- Gordon, S.; Rogers, C.; Weston, J.; Bolwell, C.; Doloonjin, O. The Forelimb and Hoof Conformation in a Population of Mongolian Horses. J. Equine Vet. Sci. 2013, 33, 90–94. [Google Scholar] [CrossRef]
- Hickman, J.; Humphrey, M. Hickman’s Farriery, 2nd ed.; JA Allen: London, UK, 1988. [Google Scholar]
- Cruz, C.; Thomason, J.; Faramarzi, B.; Bignell, W.; Sears, W.; Dobson, H.; Konyer, N.B. Changes in shape of the Standardbred distal phalanx and hoof capsule in response to exercise. Equine Comp. Exerc. Physiol. 2007, 3, 199. [Google Scholar] [CrossRef]
- Thomason, J.J.; Biewener, A.A.; Bertram, J.E. Surface strain on the equine hoof wall in vivo: Implications for the material design and functional morphology of the wall. J. Exp. Biol. 1992, 166, 145–168. [Google Scholar]
- Barrey, E. Investigation of the vertical hoof force distribution in the equine forelimb with an instrumented horseboot. Equine Vet. J. Suppl. 1990, 9, 35–38. [Google Scholar] [CrossRef]
- O’Grady, S.E.; Poupard, D.A. Proper physiologic horseshoeing. Vet. Clin. North Am. Equine Pract. 2003, 19, 333–351. [Google Scholar] [CrossRef]
- Holroyd, K.; Dixon, J.J.; Mair, T.; Bolas, N.; Bolt, D.M.; David, F.; Weller, R. Variation in foot conformation in lame horses with different foot lesions. Vet. J. 2013, 195, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Ovnicek, G.D.; Page, B.T.; Trotter, G.W. Natural balance trimming and shoeing: Its theory and application. Vet. Clin. N. Am. Equine Pract. 2003, 19, 353–377. [Google Scholar] [CrossRef]
- Kane, A.J.; Stover, S.M.; Gardner, I.A.; Bock, K.B.; Case, J.T.; Johnson, B.J.; Anderson, M.L.; Barr, B.C.; Daft, B.M.; Kinde, H.; et al. Hoof size, shape, and balance as possible risk factors for catastrophic musculoskeletal injury of Thoroughbred racehorses. Am. J. Vet. Res. 1998, 59, 1545–1552. [Google Scholar] [PubMed]
- Roland, E.; Stover, S.M.; Hull, M.L.; Dorsch, K. Geometric symmetry of the solar surface of hooves of Thoroughbred racehorses. Am. Vet. Med. Assoc. 2005, 64, 1030–1039. [Google Scholar] [CrossRef]
- Pollitt, C.C. Clinical anatomy and physiology of the normal equine foot. Equine Vet. Educ. 1992, 4, 219–224. [Google Scholar] [CrossRef]
- Reilly, P.T. In-Shoe Force Measurements and Hoof Balance. J. Equine Vet. Sci. 2010, 30, 475–478. [Google Scholar] [CrossRef]
- Wilson, A.; Agass, R.; Vaux, S.; Sherlock, E.; Day, P.; Pfau, T.; Weller, R. Foot placement of the equine forelimb: Relationship between foot conformation, foot placement and movement asymmetry. Equine Vet. J. 2015, 48, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Egenvall, A.; Lönnell, C.; Roepstorff, L. Analysis of morbidity and mortality data in riding school horses, with special regard to locomotor problems. Prev. Vet. Med. 2009, 88, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Kummer, M.; Gygax, D.; Lischer, C.; Auer, J. Comparison of the trimming procedure of six different farriers by quantitative evaluation of hoof radiographs. Vet. J. 2009, 179, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H. The effect of an acute hoof wall angulation on the stride kinematics of trotting horses. Equine Vet. J. 2010, 22 (Suppl. S9), 86–90. [Google Scholar] [CrossRef]
- Hood, D.M.; Taylor, D.; Wagner, I.P. Effects of ground surface deformability, trimming, and shoeing on quasistatic hoof loading patterns in horses. Am. J. Vet. Res. 2001, 62, 895–900. [Google Scholar] [CrossRef] [PubMed]
| |
| |
| |
| |
| |
| |
| |
|
Lateral Hoof Measurements | ||
---|---|---|
Variable | Abbreviation | Description |
Dorsal hoof wall length | DHWL | Length of dorsal hoof wall from hair line at the coronary band to ground level |
Weight bearing length lateral | WBL-L | Length from the dorsal to the palmar point of the hoof wall in contact with the ground surface |
Coronary band length | CBL | Length from the dorsal to the palmar point of the coronary band |
Dorsal hoof wall angle | DHWA | Angle between the dorsal hoof wall and the ground plane |
Heel angle | HLA | Angle between the palmer aspect of the hoof wall and the ground surface |
Dorsal coronary band height | DCBH | Vertical height between the dorsal region of the coronary band and the solar plane |
Palmer coronary band height | PCBH | Vertical height between the palmer region of the coronary band and the solar plane |
Dorsal Hoof Measurements | ||
---|---|---|
Variable | Abbreviation | Description |
Weight bearing length dorsal | WBL-D | Coronary band width between the lateral and medial hoof walls at the distal region of the hoof |
Coronary band width | CBW | Support length between the lateral and medial hoof walls at the proximal region of the hoof |
Medial dorsal hoof wall length | MDHWL | Length of the medial hoof wall from hairline to ground |
Midline dorsal hoof wall length | CDHWL | Length of the hoof wall at the midpoint of the hoof from hairline to ground |
Lateral dorsal hoof wall length | LDHWL | Length of the lateral hoof wall from hairline to ground |
Medial hoof angle | MHA | Angle between the medial hoof wall and solar plane |
Lateral hoof angle | LHA | Angle between the lateral hoof wall and solar plane |
Lateral Limb Measurements | ||
---|---|---|
Variable | Abbreviation | Description |
| VD | |
| FJA | |
| HAD |
Variable | Mean ± Standard Deviation | p Value | Increase/Decrease | ||
---|---|---|---|---|---|
Pre-Farriery | Post-Farriery | ||||
Lateral View | DHWA | 52.1° ± 3.47° | 54.36° ± 3.99° | p = 0.0001 | Increased |
HLA | 45.49° ± 7.59° | 49.96° ± 5.55° | p = 0.0001 | Increased | |
DHWL | 7.81 ± 1.35 cm | 7.56 ± 0.91 cm | p > 0.05 | Decreased | |
WBL-L | 11.58 ± 1.16 cm | 11.04 ± 1.4 cm | p = 0.0001 | Decreased | |
CBL | 10.88 ± 0.96 cm | 10.15 ± 1.09 cm | p = 0.0001 | Decreased | |
DCBH | 7.22 ± 1.21 cm | 7.43 ± 0.78 cm | p > 0.05 | Increased | |
PCBH | 2.70 ± 0.63 cm | 3.24 ± 0.56 cm | p = 0.0001 | Increased | |
Anterior View | CBW | 5.39 ± 1.00 cm | 5.09 ± 1.09 cm | p = 0.05 | Decreased |
WBL-D | 6.84 ± 1.44 cm | 6.14 ± 1.29 cm | p = 0.001 | Decreased | |
CDHWL | 3.87 ± 0.61 cm | 4.14 ± 0.94 cm | p > 0.05 | Increased | |
MDHWL | 3.57 ± 0.69 cm | 3.84 ± 0.74 cm | p = 0.03 | Increased | |
LDHWL | 3.72 ± 0.68 cm | 4.09 ± 0.80 cm | p = 0.009 | Increased | |
MHA | 78.96° ± 5.81° | 80.17° ± 5.41° | p > 0.05 | Increased | |
LHA | 73.17° ± 4.20° | 72.79° ± 4.07° | p > 0.05 | Decreased | |
Lateral limb | HAD | 189.49° ± 4.89° | 183.28° ± 2.89° | p = 0.0001 | Decreased |
FJA | 212.71° ± 8.03° | 212.81° ± 8.48° | p > 0.05 | Increased | |
VD | 184.04° ± 2.72° | 183.39° ± 2.11° | p > 0.05 | Decreased |
Variables | Pre-Farriery | Post-Farriery | |||
---|---|---|---|---|---|
r co-eff | p Value | r co-eff | p Value | ||
DHWA | WBL-L | −0.39 | 0.050 | −0.45 | 0.022 |
LHA | PCBH | 0.42 | 0.031 | - | - |
DHWL | CBL | 0.57 | 0.002 | - | - |
DHWL | DCBH | 0.93 | 0.0001 | 0.40 | 0.043 |
DHWL | PCBH | 0.75 | 0.0001 | 0.65 | 0.0001 |
DHWL | LDHWL | - | - | 0.50 | 0.009 |
WBL-L | CBL | 0.68 | 0.0001 | 0.86 | 0.000 |
WBL-L | PCBH | 0.46 | 0.019 | - | - |
WBL-L | CBW | 0.66 | 0.0001 | 0.46 | 0.018 |
WBL-L | WBL-D | 0.67 | 0.0001 | - | - |
WBL-L | LDHWL | - | - | 0.38 | 0.053 |
CBL | DCBH | 0.59 | 0.001 | - | - |
CBL | PCBH | 0.61 | 0.001 | - | - |
CBL | CBW | 0.59 | 0.002 | 0.52 | 0.007 |
CBL | WBL-D | 0.65 | 0.0001 | - | - |
CBL | CDHWL | - | - | 0.41 | 0.040 |
CBL | MDHWL | - | - | 0.41 | 0.036 |
CBL | LDHWL | - | - | 0.50 | 0.010 |
DCBH | PCBH | 0.84 | 0.0001 | - | - |
PCBH | HAD | −0.41 | 0.039 | - | - |
CBW | WBL-D | 0.95 | 0.0001 | 0.87 | 0.0001 |
CBW | CDHWL | 0.54 | 0.005 | 0.78 | 0.0001 |
CBW | MDHWL | 0.67 | 0.0001 | 0.76 | 0.0001 |
CBW | LDHWL | 0.58 | 0.002 | 0.82 | 0.0001 |
WBL-D | CDHWL | 0.53 | 0.005 | 0.79 | 0.0001 |
WBL-D | MDHWL | 0.64 | 0.0001 | 0.76 | 0.0001 |
WBL-D | LDHWL | 0.53 | 0.006 | 0.79 | 0.0001 |
CDHWL | MDHWL | 0.91 | 0.0001 | 0.93 | 0.0001 |
CDHWL | LDHWL | 0.86 | 0.0001 | 0.92 | 0.0001 |
CDHWL | LHA | 0.44 | 0.026 | - | - |
MDHWL | LDHWL | 0.91 | 0.0001 | 0.92 | 0.0001 |
MDHWL | MHA | −0.41 | 0.040 | - | - |
FJA | VD | −0.70 | 0.0001 | - | - |
MHA | FJA | - | - | −0.44 | 0.025 |
VD | MHA | - | - | 0.51 | 0.008 |
HLA | VD | - | - | 0.41 | 0.035 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leśniak, K.; Williams, J.; Kuznik, K.; Douglas, P. Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine? Animals 2017, 7, 29. https://doi.org/10.3390/ani7040029
Leśniak K, Williams J, Kuznik K, Douglas P. Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine? Animals. 2017; 7(4):29. https://doi.org/10.3390/ani7040029
Chicago/Turabian StyleLeśniak, Kirsty, Jane Williams, Kerry Kuznik, and Peter Douglas. 2017. "Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine?" Animals 7, no. 4: 29. https://doi.org/10.3390/ani7040029
APA StyleLeśniak, K., Williams, J., Kuznik, K., & Douglas, P. (2017). Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine? Animals, 7(4), 29. https://doi.org/10.3390/ani7040029