A New Approach to EMG Analysis of Closed-Circuit Movements Such as the Flat Bench Press
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Procedures
2.3. Electromyography
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stastny, P.; Gołaś, A.; Blazek, D.; Maszczyk, A.; Wilk, M.; Pietraszewski, P.; Petr, M.; Uhlir, P.; Zając, A. A systematic review of surface electromyography analyses of the bench press movement task. PLoS ONE 2017, 12, e0171632. [Google Scholar] [CrossRef] [PubMed]
- Van den Tillaar, R.; Saeterbakken, A.H.; Ettema, G. Is the occurrence of the sticking region the result of diminishing potentiation in bench press? J. Sports Sci. 2012, 30, 591–599. [Google Scholar] [CrossRef]
- Welsch, E.A.; Bird, M.; Mayhew, J.L. Electromyographic activity of the pectoralis major and anterior deltoid muscles during three upper-body lifts. J. Strength Cond. Res. 2005, 19, 449–452. [Google Scholar] [PubMed]
- Anderson, K.G.; Behm, D.G. Maintenance of EMG activity and loss of force output with instability. J. Strength Cond. Res. 2004, 18, 637–640. [Google Scholar] [PubMed]
- Van den Tillaar, R.; Saeterbakken, A. Effect of fatigue upon performance and electromyographic activity in 6-RM bench Press. J. Hum. Kinet. 2014, 40, 57–65. [Google Scholar] [PubMed]
- Ettema, G. A comparison of successful and unsuccessful attempts in maximal bench pressing. Med. Sci. Sports Exerc. 2009, 41, 2056–2063. [Google Scholar]
- Van den Tillaar, R.; Ettema, G. A comparison of muscle activity in concentric and counter movement maximum bench press. J. Hum. Kinet. 2013, 38, 63–71. [Google Scholar] [PubMed]
- Saeterbakken, A.H.; Mo, D.-A.; Scott, S.; Andersen, V. The effects of bench press variations in competitive athletes on muscle activity and performance. J. Hum. Kinet. 2017, 57, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front. Physiol. 2017, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Vigotsky, A.D.; Beardsley, C.; Contreras, B.; Steele, J.; Ogborn, D.; Phillips, S.M. Greater electromyographic responses do not imply greater motor unit recruitment and ‘hypertrophic potential’ cannot be inferred. J. Strength Cond. Res. 2017, 31, e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Vigotsky, A.D.; Ogborn, D.; Phillips, S.M. Motor unit recruitment cannot be inferred from surface EMG amplitude and basic reporting standards must be adhered to. Eur. J. Appl. Physiol. 2016, 116, 657–658. [Google Scholar] [CrossRef] [PubMed]
- Konrad, P. A Practical Introduction to Kinesiological Electromyography; Noraxon Inc.: Scottsdale, AZ, USA, 2005. [Google Scholar]
- Enoka, R.M.; Fuglevand, A.J. Motor unit physiology: Some unresolved issues. Muscle Nerve 2001, 24, 4–17. [Google Scholar] [CrossRef]
- Elliott, B.C.; Wilson, G.J.; Kerr, G.K. A biomechanical analysis of the sticking region in the bench press. Med. Sci. Sports Exerc. 1989, 21, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Chulvi Medrano, I.; Diaz Cantalejo, A. Efficacy and safety of the bench press exercise. Review. Revista Internacional de Medicina y Ciencias de la Actividad Fisica y del Deporte 2008, 8, 338–352. [Google Scholar]
- Castillo, F.; Valverde, T.; Morales, A.; Pérez-Guerra, A.; De León, F.; García-Manso, J. Maximum power, optimal load and optimal power spectrum for power training in upper-body (bench press): A review. Revista Andaluza de Medicina del Deporte 2012, 5, 18–27. [Google Scholar] [CrossRef]
- Maszczyk, A.; Golas, A.; Czuba, M.; Krol, H.; Wilk, M.; Kostrzewa, M.; Zajac, A.; Ntastny, P.; Goodwin, J. EMG analysis and modelling of Flat Bench Press using artificial neural networks. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2016, 38, 91–103. [Google Scholar]
- Maszczyk, A.; Gołaś, A.; Pietraszewski, P.; Roczniok, R.; Zając, A.; Stanula, A. Application of neural and regression models in sports results prediction. Procedia Soc. Behav. Sci. 2014, 117, 482–487. [Google Scholar] [CrossRef]
- Burden, A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J. Electromyogr. Kinesiol. 2010, 20, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Reiman, M.P.; Bolgla, L.A.; Loudon, J.K. A literature review of studies evaluating gluteus maximus and gluteus medius activation during rehabilitation exercises. Physiother. Theory Pract. 2012, 28, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Stastny, P.; Lehnert, M.; Zaatar, A.M.; Svoboda, Z.; Xaverova, Z. Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges? J. Strength Cond. Res. 2015, 29, 3177–3187. [Google Scholar] [CrossRef] [PubMed]
- Marras, W.S.; Davis, K.; Maronitis, A. A non-MVC EMG normalization technique for the trunk musculature: Part 2. Validation and use to predict spinal loads. J. Electromyogr. Kinesiol. 2001, 11, 11–18. [Google Scholar] [CrossRef]
- Gentil, P.; Oliveira, E.; Júnior, V.D.A.R.; Do Carmo, J.; Bottaro, M. Effects of exercise order on upper-body muscle activation and exercise performance. J. Strength Cond. Res. 2007, 21, 1082–1086. [Google Scholar] [PubMed]
- Król, H.; Gołaś, A. Effect of barbell weight on the structure of the flat bench press. J. Strength Cond. Res. 2017, 31, 1321–1337. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brennecke, A.; Guimarães, T.M.; Leone, R.; Cadarci, M.; Mochizuki, L.; Simão, R.; Amadio, A.C.; Serrão, J.C. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J. Strength Cond. Res. 2009, 23, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Humphries, B.; Hohmann, E.; Bryant, A.L. The influence of variable range of motion training on neuromuscular performance and control of external loads. J. Strength Cond. Res. 2011, 25, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Enoka, R.M. Neural control of shortening and lengthening contractions: Influence of task constraints. J. Physiol. 2008, 586, 5853–5864. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.D.; Mills, M.D.; Sterczala, A.J.; Mala, J.; Comstock, B.A.; Szivak, T.K.; DuPont, W.H.; Looney, D.P.; McDermott, D.M.; Hooper, D.R.; et al. The relationship between muscle action and repetition maximum on the squat and bench press in men and women. J. Strength Cond. Res. 2014, 28, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Sinclair, P.J. Muscle activations under varying lifting speeds and intensities during bench press. Eur. J. Appl. Physiol. 2012, 112, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Maeo, S.; Takahashi, T.; Takai, Y.; Kanehisa, H. Trainability of muscular activity level during maximal voluntary co-contraction: Comparison between bodybuilders and nonathletes. PLoS ONE 2013, 8, e79486. [Google Scholar] [CrossRef] [PubMed]
Muscle | Eccentric Phase | Concentric Phase | ||||||
---|---|---|---|---|---|---|---|---|
70% 1 RM—150 kg | 90% 1 RM—200 kg | 70% 1 RM—150 kg | 90% 1 RM—200 kg | |||||
2 s/1 s | 6 s/1 s | 2 s/1 s | 6 s/1 s | 2 s/1 s | 6 s/1 s | 2 s/1 s | 6 s/1 s | |
Left ADpeak | 45 *†‡§ | 60 † | 96 § | 89 § | 75 † | 79 † | 157 *‡ | 171 * |
Left PMpeak | 24 *†§ | 27 *†§ | 57 *§ | 59 *§ | 71 *† | 77 *† | 91 * | 90 |
Left TBlatpeak | 75 † | 75 † | 55 *§ | 53 * | 58 *†‡ | 81 † | 85 *‡ | 62 * |
Left TBlongpeak | 36 ‡§ | 52 *§ | 36 *§ | 51 § | 92 * | 81 | 90 | 74 |
Left SUM | 180 * | 214 | 244 * | 252 * | 296 * | 318 * | 424 * | 398 * |
Right ADpeak | 75 ‡ | 51 †§ | 87 § | 86 § | 64 †‡ | 93 † | 135 | 144 |
Right PMpeak | 48 †‡§ | 73 †§ | 91 | 92 | 111 | 106 | 110 | 107 |
Right TBlatpeak | 85 § | 74 | 75 § | 79 § | 137 †‡ | 86 | 102 | 102 |
Right TBlongpeak | 23 †§ | 32 †§ | 54 § | 63 § | 65 † | 71 | 105 | 95 |
Right SUM | 231 | 232 | 307 | 320 | 377 | 356 | 451 | 448 |
Right/Left difference | 52 | 18 | 63 | 68 | 81 | 38 | 28 | 50 |
Muscle | Eccentric Phase | Concentric Phase | ||||||
---|---|---|---|---|---|---|---|---|
70% 1 RM—150 kg | 90% 1 RM—200 kg | 70% 1 RM—150 kg | 90% 1 RM—200 kg | |||||
2 s/1 s | 6 s/1 s | 2 s/1 s | 6 s/1 s | 2 s/1 s | 6 s/1 s | 2 s/1 s | 6 s/1 s | |
Left | Basic | +18% | +35% * | +40% * | Basic | +7% | +43% * | +34% |
Right | Basic | +1% | +75% | +72% | Basic | −5% | +19% | +18% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golas, A.; Maszczyk, A.; Stastny, P.; Wilk, M.; Ficek, K.; Lockie, R.G.; Zajac, A. A New Approach to EMG Analysis of Closed-Circuit Movements Such as the Flat Bench Press. Sports 2018, 6, 27. https://doi.org/10.3390/sports6020027
Golas A, Maszczyk A, Stastny P, Wilk M, Ficek K, Lockie RG, Zajac A. A New Approach to EMG Analysis of Closed-Circuit Movements Such as the Flat Bench Press. Sports. 2018; 6(2):27. https://doi.org/10.3390/sports6020027
Chicago/Turabian StyleGolas, Artur, Adam Maszczyk, Petr Stastny, Michal Wilk, Krzysztof Ficek, Robert George Lockie, and Adam Zajac. 2018. "A New Approach to EMG Analysis of Closed-Circuit Movements Such as the Flat Bench Press" Sports 6, no. 2: 27. https://doi.org/10.3390/sports6020027
APA StyleGolas, A., Maszczyk, A., Stastny, P., Wilk, M., Ficek, K., Lockie, R. G., & Zajac, A. (2018). A New Approach to EMG Analysis of Closed-Circuit Movements Such as the Flat Bench Press. Sports, 6(2), 27. https://doi.org/10.3390/sports6020027