Next Article in Journal
Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort
Previous Article in Journal
Biomarker-Guided Non-Adaptive Trial Designs in Phase II and Phase III: A Methodological Review
Article Menu

Export Article

Open AccessReview
J. Pers. Med. 2017, 7(1), 2; doi:10.3390/jpm7010002

Methods for the In Vitro Characterization of Nanomedicines—Biological Component Interaction

Sagetis-Biotech, Barcelona, 08017, Spain
Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) and Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, 08034, Spain
Author to whom correspondence should be addressed.
Received: 11 November 2016 / Accepted: 25 January 2017 / Published: 27 January 2017
View Full-Text   |   Download PDF [3121 KB, uploaded 4 February 2017]   |  


The design of colloidal nanosystems intended for biomedical applications, specifically in the field of personalized medicine, has increased notably in the last years. Consequently, a variety of characterization techniques devoted to studying nanomedicine interactions with proteins and cells have been developed, since a deep characterization of nanosystems is required before starting preclinical and clinical studies. In this context, this review aims to summarize the main techniques used to assess the interaction of nanomedicines with biological systems, highlighting their advantages and disadvantages. Testing designed nanomaterials with these techniques is required in order to have more information about their behavior on a physiological environment. Moreover, techniques used to study the interaction of nanomedicines with proteins, such as albumin and fibrinogen, are summarized. These interactions are not desired, since they usually are the first signal to the body for the activation of the immune system, which leads to the clearance of the exogenous components. On the other hand, techniques for studying the cell toxicity of nanosystems are also summarized, since this information is required before starting preclinical steps. The translation of knowledge from novel designed nanosystems at a research laboratory scale to real human therapies is usually a limiting or even a final point due to the lack of systematic studies regarding these two aspects: nanoparticle interaction with biological components and nanoparticle cytotoxicity. In conclusion, this review will be a useful support for those scientists aiming to develop nanosystems for nanomedicine purposes. View Full-Text
Keywords: Personalized nanomedicine; characterization techniques; nanomaterials; interaction with biological components Personalized nanomedicine; characterization techniques; nanomaterials; interaction with biological components

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Fornaguera, C.; Solans, C. Methods for the In Vitro Characterization of Nanomedicines—Biological Component Interaction. J. Pers. Med. 2017, 7, 2.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
J. Pers. Med. EISSN 2075-4426 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top