Next Article in Journal
Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans
Next Article in Special Issue
The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids
Previous Article in Journal
The Landscape of the Emergence of Life
Previous Article in Special Issue
Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth
Article Menu

Export Article

Open AccessEssay
Life 2016, 6(2), 21; doi:10.3390/life6020021

A Field Trip to the Archaean in Search of Darwin’s Warm Little Pond

1
Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
2
DigitalSpace Research, Boulder Creek, CA 95006, USA
Academic Editor: Niles Lehman
Received: 22 March 2016 / Revised: 11 May 2016 / Accepted: 20 May 2016 / Published: 25 May 2016
(This article belongs to the Special Issue Origin of Cellular Life)
View Full-Text   |   Download PDF [6415 KB, uploaded 25 May 2016]   |  

Abstract

Charles Darwin’s original intuition that life began in a “warm little pond” has for the last three decades been eclipsed by a focus on marine hydrothermal vents as a venue for abiogenesis. However, thermodynamic barriers to polymerization of key molecular building blocks and the difficulty of forming stable membranous compartments in seawater suggest that Darwin’s original insight should be reconsidered. I will introduce the terrestrial origin of life hypothesis, which combines field observations and laboratory results to provide a novel and testable model in which life begins as protocells assembling in inland fresh water hydrothermal fields. Hydrothermal fields are associated with volcanic landmasses resembling Hawaii and Iceland today and could plausibly have existed on similar land masses rising out of Earth’s first oceans. I will report on a field trip to the living and ancient stromatolite fossil localities of Western Australia, which provided key insights into how life may have emerged in Archaean, fluctuating fresh water hydrothermal pools, geological evidence for which has recently been discovered. Laboratory experimentation and fieldwork are providing mounting evidence that such sites have properties that are conducive to polymerization reactions and generation of membrane-bounded protocells. I will build on the previously developed coupled phases scenario, unifying the chemical and geological frameworks and proposing that a hydrogel of stable, communally supported protocells will emerge as a candidate Woese progenote, the distant common ancestor of microbial communities so abundant in the earliest fossil record. View Full-Text
Keywords: origin of life; hydrothermal systems; progenote; microbial communities; stromatolites origin of life; hydrothermal systems; progenote; microbial communities; stromatolites
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Damer, B. A Field Trip to the Archaean in Search of Darwin’s Warm Little Pond. Life 2016, 6, 21.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Life EISSN 2075-1729 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top