Analysis of Kinematic and Muscular Fatigue in Long-Distance Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Participants
2.2. Experimental Design
2.3. Kinematic Assessment
2.4. EMG Assessment
2.5. Statistical Analysis
3. Results
3.1. Kinematic Parameters
3.2. EMG Parameters
4. Discussion
4.1. Electrical Manifestations of Muscle Fatigue
4.2. Muscle Activity
4.3. Kinematic Evaluation
5. Conclusions and Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG Based Muscle Fatigue Evaluation in Biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G. Force Maintenance with Submaximal Fatiguing Contractions. Can. J. Appl. Physiol. 2004, 29, 274–290. [Google Scholar] [CrossRef] [PubMed]
- Bigland-Ritchie, B.; Woods, J.J. Changes in Muscle Contractile Properties and Neural Control during Human Muscular Fatigue. Muscle Nerve 1984, 7, 691–699. [Google Scholar] [CrossRef]
- Gandevia, S.C. Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef] [PubMed]
- Hainaut, K.; Duchateau, J. Muscle fatigue, effects of training and disuse. Muscle Nerve 1989, 12, 660–669. [Google Scholar] [CrossRef]
- Kouzaki, M.; Shinohara, M. The Frequency of Alternate Muscle Activity Is Associated with the Attenuation in Muscle Fatigue. J. Appl. Physiol. 2006, 101, 715–720. [Google Scholar] [CrossRef]
- Edwards, R.G.; Lippold, O.C. The Relation between Force and Integrated Electrical Activity in Fatigued Muscle. J. Physiol. 1956, 132, 677–681. [Google Scholar] [CrossRef]
- Bigland-Ritchie, B.; Johansson, R.; Lippold, O.C.; Woods, J.J. Contractile Speed and EMG Changes during Fatigue of Sustained Maximal Voluntary Contractions. J. Neurophysiol. 1983, 50, 313–324. [Google Scholar] [CrossRef]
- Turpin, N.A.; Guével, A.; Durand, S.; Hug, F. Fatigue-Related Adaptations in Muscle Coordination during a Cyclic Exercise in Humans. J. Exp. Biol. 2011, 214, 3305–3314. [Google Scholar] [CrossRef]
- Billaut, F.; Basset, F.A.; Falgairette, G. Muscle Coordination Changes during Intermittent Cycling Sprints. Neurosci. Lett. 2005, 380, 265–269. [Google Scholar] [CrossRef]
- Dorel, S.; Drouet, J.M.; Couturier, A.; Champoux, Y.; Hug, F. Changes of Pedaling Technique and Muscle Coordination during an Exhaustive Exercise. Med. Sci. Sports Exerc. 2009, 41, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, M.; Sirin, A.V.; Oddsson, L.; Thorstensson, A. Different Strategies to Compensate for the Effects of Fatigue Revealed by Neuromuscular Adaptation Processes in Humans. Neurosci. Lett. 1994, 166, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Rodacki, A.L.F.; Fowler, N.E.; Bennett, S.J. Vertical Jump Coordination: Fatigue Effects. Med. Sci. Sports. Exerc. 2002, 34, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Vaz, J.R.; Olstad, B.H.; Cabri, J.; Kjendlie, P.-L.; Pezarat-Correia, P.; Hug, F. Muscle Coordination during Breaststroke Swimming: Comparison between Elite Swimmers and Beginners. J. Sports Sci. 2016, 34, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, Y.; Matsunaga, N.; Akuzawa, H.; Kojima, T.; Oshikawa, T.; Iizuka, S.; Okuno, K.; Kaneoka, K. Difference in Muscle Synergies of the Butterfly Technique with and without Swimmer’s Shoulder. Sci. Rep. 2022, 12, 14546. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, Y.; Matsunaga, N.; Iizuka, S.; Akuzawa, H.; Kaneoka, K. Muscle Synergy of the Underwater Undulatory Swimming in Elite Male Swimmers. Front. Sports Act. Living 2020, 2, 62. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, Y.; Matsunaga, N.; Akuzawa, H.; Oshikawa, T.; Kaneoka, K. Comparison of Muscle Coordination during Front Crawl and Backstroke with and without Swimmer’s Shoulder Pain. Sports Health 2023, 194173812311669. [Google Scholar] [CrossRef]
- Martens, J.; Figueiredo, P.; Daly, D. Electromyography in the Four Competitive Swimming Strokes: A Systematic Review. J. Electromyogr. Kinesiol. 2015, 25, 273–291. [Google Scholar] [CrossRef]
- Deschodt, J.V.; Arsac, L.M.; Rouard, A.H. Relative Contribution of Arms and Legs in Humans to Propulsion in 25-m Sprint Front-Crawl Swimming. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 192–199. [Google Scholar] [CrossRef]
- Aujouannet, Y.A.; Bonifazi, M.; Hintzy, F.; Vuillerme, N.; Rouard, A.H. Effects of a High-Intensity Swim Test on Kinematic Parameters in High-Level Athletes. Appl. Physiol. Nutr. Metab. 2006, 31, 150–158. [Google Scholar] [CrossRef]
- Seifert, L.; Chollet, D.; Rouard, A. Swimming Constraints and Arm Coordination. Hum. Mov. Sci. 2007, 26, 68–86. [Google Scholar] [CrossRef]
- Craig, A.B., Jr.; Skehan, P.L.; Pawelczyk, J.A.; Boomer, W.L. Velocity, stroke rate, and distance per stroke during elite swimming competition. Med. Sci. Sports Exerc. 1985, 17, 625–634. [Google Scholar] [CrossRef]
- Pai, Y.; Hay, J.G.; Wilson, B.D. Stroking Techniques of Elite Swimmers. J. Sports Sci. 1984, 2, 225–239. [Google Scholar] [CrossRef]
- Alberty, M.; Sidney, M.; Huot-Marchand, F.; Hespel, J.M.; Pelayo, P. Intracyclic Velocity Variations and Arm Coordination during Exhaustive Exercise in Front Crawl Stroke. Int. J. Sports Med. 2005, 26, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Alberty, M.; Potdevin, F.; Dekerle, J.; Pelayo, P.; Gorce, P.; Sidney, M. Changes in Swimming Technique during Time to Exhaustion at Freely Chosen and Controlled Stroke Rates. J. Sports Sci. 2008, 26, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Vilas-Boas, J.P.; Seifert, L.; Chollet, D.; Fernandes, R.J. Inter-Limb Coordinative Structure in a 200 m Front Crawl Event. Open Sports Sci. J. 2014, 3, 25–27. [Google Scholar] [CrossRef]
- Seifert, L.; Chollet, D.; Bardy, B. Effect of Swimming Velocity on Arm Coordination in the Front Crawl: A Dynamic Analysis. J. Sports Sci. 2004, 22, 651–660. [Google Scholar] [CrossRef]
- Kwok, W.Y.; So, B.C.L.; Ng, S.M.S. Underwater Surface Electromyography for the Evaluation of Muscle Activity during Front Crawl Swimming: A Systematic Review. J. Sports Sci. Med. 2022, 22, 1–16. [Google Scholar] [CrossRef]
- Ikuta, Y.; Matsuda, Y.; Yamada, Y.; Kida, N.; Oda, S.; Moritani, T. Relationship between Decreased Swimming Velocity and Muscle Activity during 200-m Front Crawl. Eur. J. Appl. Physiol. 2012, 112, 3417–3429. [Google Scholar] [CrossRef]
- Stirn, I.; Jarm, T.; Kapus, V.; Strojnik, V. Evaluation of Muscle Fatigue during 100-m Front Crawl. Eur. J. Appl. Physiol. 2011, 111, 101–113. [Google Scholar] [CrossRef]
- Figueiredo, P.; Rouard, A.; Vilas-Boas, J.P.; Fernandes, R.J. Upper- and Lower-Limb Muscular Fatigue during the 200-m Front Crawl. Appl. Physiol. Nutr. Metab. 2013, 38, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Sanders, R.; Gorski, T.; Vilas-Boas, J.; Fernandes, R. Kinematic and Electromyographic Changes during 200 m Front Crawl at Race Pace. Int. J. Sports Med. 2012, 34, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Conceição, A.; Silva, A.J.; Barbosa, T.; Karsai, I.; Louro, H. Neuromuscular Fatigue during 200 M Breaststroke. J. Sports Sci. Med. 2014, 13, 200–210. [Google Scholar]
- Lomax, M.; Tasker, L.; Bostanci, O. Inspiratory Muscle Fatigue Affects Latissimus Dorsi but Not Pectoralis Major Activity during Arms Only Front Crawl Sprinting. J. Strength Cond. Res. 2014, 28, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Puce, L.; Trompetto, C.; Currà, A.; Marinelli, L.; Mori, L.; Panascì, M.; Cotellessa, F.; Biz, C.; Bragazzi, N.L.; Ruggieri, P. The Effect of Verbal Encouragement on Performance and Muscle Fatigue in Swimming. Medicina 2022, 58, 1709. [Google Scholar] [CrossRef]
- Costill, D.L.; Kovaleski, J.; Porter, D.; Kirwan, J.; Fielding, R.; King, D. Energy Expenditure during Front Crawl Swimming: Predicting Success in Middle-Distance Events. Int. J. Sports Med. 1985, 6, 266–270. [Google Scholar] [CrossRef]
- Puce, L.; Chamari, K.; Marinelli, L.; Mori, L.; Bove, M.; Faelli, E.; Fassone, M.; Cotellessa, F.; Bragazzi, N.L.; Trompetto, C. Muscle Fatigue and Swimming Efficiency in Behind and Lateral Drafting. Front. Physiol. 2022, 13, 835766. [Google Scholar] [CrossRef]
- Rainoldi, A.; Cescon, C.; Bottin, A.; Casale, R.; Caruso, I. Surface EMG Alterations Induced by Underwater Recording. J. Electromyogr. Kinesiol. 2004, 14, 325–331. [Google Scholar] [CrossRef]
- Ryan, M.M.; Gregor, R.J. EMG Profiles of Lower Extremity Muscles during Cycling at Constant Workload and Cadence. J. Electromyogr. Kinesiol. 1992, 2, 69–80. [Google Scholar] [CrossRef]
- Puce, L.; Pallecchi, I.; Marinelli, L.; Mori, L.; Bove, M.; Diotti, D.; Ruggeri, P.; Faelli, E.; Cotellessa, F.; Trompetto, C. Surface Electromyography Spectral Parameters for the Study of Muscle Fatigue in Swimming. Front. Sports Act. Living 2021, 3, 644765. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Bakker, A.; Cai, J.; English, L.; Kaiser, G.; Mesa, V.; Van Dooren, W. Beyond Small, Medium, or Large: Points of Consideration When Interpreting Effect Sizes. Educ. Stud. Math. 2019, 102, 1–8. [Google Scholar] [CrossRef]
- López-Martín, E.; Ardura, D. The effect size in scientific publication. Educación XX1 2023, 26, 9–17. [Google Scholar]
- Cureton, E.E. Rank-biserial correlation. Psychometrika 1956, 21, 287–290. [Google Scholar] [CrossRef]
- Hirai, H.; Miyazaki, F.; Naritomi, H.; Koba, K.; Oku, T.; Uno, K.; Uemura, M.; Nishi, T.; Kageyama, M.; Krebs, H.I. On the Origin of Muscle Synergies: Invariant Balance in the Co-Activation of Agonist and Antagonist Muscle Pairs. Front. Bioeng. Biotechnol. 2015, 3, 192. [Google Scholar] [CrossRef] [PubMed]
- Rouard, A.; Billat, R. Influences of Sex and Level of Performance on Freestyle Stroke: An Electromyography and Kinematic Study. Int. J. Sports Med. 1990, 11, 150–155. [Google Scholar] [CrossRef]
- Pink, M.; Perry, J.; Browne, A.; Scovazzo, M.L.; Kerrigan, J. The Normal Shoulder during Freestyle Swimming: An Electromyographic and Cinematographic Analysis of Twelve Muscles. Am. J. Sports Med. 1991, 19, 569–576. [Google Scholar] [CrossRef]
- Rouard, A.H.; Billat, R.P.; Deschodt, V.; Clarys, J.P. Muscular Activations during Repetitions of Sculling Movements up to Exhaustion in Swimming. Arch. Physiol. Biochem. 1997, 105, 655–662. [Google Scholar] [CrossRef]
- Caty, V.; Aujouannet, Y.; Hintzy, F.; Bonifazi, M.; Clarys, J.P.; Rouard, A.H. Wrist stabilisation and forearm muscle coactivation during freestyle swimming. J. Electromyogr. Kinesiol. 2007, 17, 285–291. [Google Scholar] [CrossRef]
- Petrofsky, J.S. Frequency and Amplitude Analysis of the EMG during Exercise on the Bicycle Ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 41, 1–15. [Google Scholar] [CrossRef]
- González-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic Models to Assess Muscle Fatigue. J. Electromyogr. Kinesiol. 2012, 22, 501–512. [Google Scholar] [CrossRef]
- Henneman, E.; Somjen, G.; Carpenter, D.O. Excitability and Inhibitibility of Motoneurons of Different Sizes. J. Neurophysiol. 1965, 28, 599–620. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Duchateau, J. Translating Fatigue to Human Performance. Med. Sci. Sports Exerc. 2016, 48, 2228–2238. [Google Scholar] [CrossRef] [PubMed]
- Laudner, K.G.; Williams, J.G. The Relationship between Latissimus Dorsi Stiffness and Altered Scapular Kinematics among Asymptomatic Collegiate Swimmers. Phys. Ther. Sport 2013, 14, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Payton, C.; Hogarth, L.; Burkett, B.; Van De Vliet, P.; Lewis, S.; Oh, Y.-T. Active Drag as a Criterion for Evidence-Based Classification in Para Swimming. Med. Sci. Sports Exerc. 2020, 52, 1576–1584. [Google Scholar] [CrossRef]
- Toussaint, H.M.; Beek, P.J. Biomechanics of Competitive Front Crawl Swimming. Sports Med. 1992, 13, 8–24. [Google Scholar] [CrossRef]
- Pollock, S.; Gaoua, N.; Johnston, M.J.; Cooke, K.; Girard, O.; Mileva, K.N. Training Regimes and Recovery Monitoring Practices of Elite British Swimmers. J. Sports Sci. Med. 2019, 18, 577–585. [Google Scholar]
- Hermosilla, F.; González-Rave, J.M.; Del Castillo, J.A.; Pyne, D.B. Periodization and Programming for Individual 400 m Medley Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 6474. [Google Scholar] [CrossRef]
- Lepers, R.; Maffiuletti, N.A. Age and gender interactions in ultraendurance performance: Insight from the triathlon. Med. Sci. Sports Exerc. 2011, 43, 134–139. [Google Scholar] [CrossRef]
- Lepers, R. Analysis of Hawaii ironman performances in elite triathletes from 1981 to 2007. Med. Sci. Sports Exerc. 2008, 40, 1828–1834. [Google Scholar] [CrossRef]
- Tanaka, H.; Seals, D.R. Age and gender interactions in physiological functional capacity: Insight from swimming performance. J. Appl. Physiol. 1997, 82, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.; Rüst, C.A.; Rosemann, T.; Lepers, R.; Knechtle, B. Analysis of 10 km swimming performance of elite male and female open-water swimmers. SpringerPlus 2013, 2, 603. [Google Scholar] [CrossRef] [PubMed]
Sex | n | Age (Years) | Height (cm) | Body Mass (kg) | BMI (kg/m2) | International Competition Experience (Years) | WAPS |
---|---|---|---|---|---|---|---|
Male | 15 | 19.07 ± 2.31 | 181 73 ± 5.06 | 73.00 ± 5.55 | 22.11 ± 1.54 | 3.87 ± 0.74 | 795.07 ± 41.39 |
Female | 6 | 20.83 ± 3.19 | 170.83 ± 5.49 | 60.00 ± 4.56 | 20.53 ± 0.36 | 4.67 ± 1.75 | 744.33 ± 66.63 |
MDS | 9 | 20.11 ± 3.14 | 182.33 ± 2.25 | 65.33 ± 6.60 | 21.72 ± 1.32 | 4.33 ± 1.50 | 775.89 ± 63.35 |
LDS | 12 | 19.16 ± 2.25 | 173.67 ± 6.60 | 72.25 ± 5.97 | 21.58 ± 1.77 | 3.92 ± 0.79 | 784 08 ± 47.44 |
All | 21 | 19.57 ± 2.64 | 178.62 ± 7.14 | 69.29 ± 7.94 | 21.66 ± 1.49 | 4.10 ± 1.14 | 780.57 ± 53.48 |
Kinematic Parameters | Non-Fatigue vs. Pre-Mechanical Failure | Non-Fatigue vs. Mechanical Failure | Overall | ||||
---|---|---|---|---|---|---|---|
Percentage Difference (%) | ES | p Value | Percentage Difference (%) | ES | p Value | ES | |
Stroke frequency | 7 | −0.931 | <0.001 | −5 | 0.883 | <0.001 | 0.587 |
Stroke length | −6 | 0.948 | <0.001 | −6 | 0.827 | <0.001 | 0.403 |
Stroke index | −6 | 0.965 | <0.001 | −15 | 1.000 | <0.001 | 0.649 |
Non-Fatigue vs. Pre-Mechanical Failure | Non-Fatigue vs. Mechanical Failure | ||||||
---|---|---|---|---|---|---|---|
Muscle | Percentage Difference (%) | ES | p Value | Percentage Difference (%) | ES | p Value | |
E&G | 16 | −1.000 | <0.001 | 8 | −0.350 | 0.252 | |
FRC | PULL | 16 | −0.961 | <0.001 | −11 | 1.000 | <0.001 |
PUSH | 23 | −1.000 | <0.001 | −10 | 0.448 | 0.017 | |
RECOVERY | 30 | −1.000 | <0.001 | −11 | 0.547 | <0.001 | |
E&G | 110 | −1.000 | <0.001 | 27 | −0.450 | 0.135 | |
BB | PULL | 27 | −1.000 | <0.001 | −20 | 1.000 | <0.001 |
PUSH | 0 | 0.016 | 0.941 | −17 | 0.482 | 0.010 | |
RECOVERY | 18 | −0.425 | <0.001 | 0 | 0.041 | 0.719 | |
E&G | 13 | −1.000 | <0.001 | −28 | 1.000 | <0.001 | |
TB | PULL | 15 | −0.866 | <0.001 | −11 | 0.888 | <0.001 |
PUSH | 1 | −0.286 | 0.133 | −15 | 0.792 | <0.001 | |
RECOVERY | 18 | −0.773 | <0.001 | −34 | 0.936 | <0.001 | |
E&G | 10 | −0.933 | <0.001 | −48 | 1.000 | <0.001 | |
DL | PULL | −11 | 0.492 | 0.002 | −38 | 0.689 | <0.001 |
PUSH | 42 | −0.855 | <0.001 | 35 | −0.872 | <0.001 | |
RECOVERY | 13 | −0.631 | <0.001 | −22 | 0.908 | <0.001 | |
E&G | 5 | −0.150 | 0.639 | −32 | 1.000 | <0.001 | |
LD | PULL | 7 | −0.621 | <0.001 | −8 | 0.721 | <0.001 |
PUSH | −17 | 0.906 | <0.001 | −13 | 0.488 | 0.009 | |
RECOVERY | 51 | 1.000 | <0.001 | −18 | 0.749 | <0.001 | |
E&G | 7 | −0.883 | 0.001 | −44 | 1.000 | <0.001 | |
ST | PULL | 43 | −1.000 | <0.001 | −17 | 1.000 | <0.001 |
PUSH | 23 | −1.000 | <0.001 | −3 | 0.016 | 0.941 | |
RECOVERY | −2 | 0.098 | 0.388 | −30 | 1.000 | <0.001 | |
E&G | −10 | 0.677 | 0.022 | −14 | 1.000 | <0.001 | |
ES | PULL | 13 | −0.905 | <0.001 | 11 | −0.552 | <0.001 |
PUSH | 0 | −0.004 | 0.988 | −25 | 1.000 | <0.001 | |
RECOVERY | 25 | −0.671 | <0.001 | −8 | 0.144 | 0.205 | |
E&G | 135 | −1.000 | <0.001 | −13 | 0.850 | 0.002 | |
PM | PULL | 49 | −0.946 | <0.001 | −11 | 0.624 | <0.001 |
PUSH | 4 | −0.141 | 0.464 | −20 | 0.553 | 0.003 | |
RECOVERY | 7 | −0.392 | <0.001 | 33 | −0.578 | <0.001 | |
E&G | −2 | 0.467 | 0.121 | −10 | 0.933 | <0.001 | |
RF | PULL | 34 | −1.000 | <0.001 | 2 | −131 | 0.417 |
PUSH | 29 | −0.741 | <0.001 | 12 | −0.974 | <0.001 | |
RECOVERY | 29 | −0.965 | <0.001 | 4 | −0.299 | 0.008 | |
E&G | 96 | −1.000 | <0.001 | 69 | −1.000 | <0.001 | |
BF | PULL | 11 | −0.606 | <0.001 | 13 | −0.409 | 0.011 |
PUSH | 10 | −0.553 | 0.003 | 4 | −0.169 | 0.378 | |
RECOVERY | 18 | 0.751 | <0.001 | 4 | −0.111 | 0.329 |
Male vs. Female | MDS vs. LDS | |||
---|---|---|---|---|
Percentage Difference (%) | p Value | Percentage Difference (%) | p Value | |
FCR | −1 | 0.779 | 3 | 0.556 |
BB | −3 | 0.694 | 5 | 0.479 |
TB | 1 | 0.896 | 5 | 0.408 |
DL | −2 | 0.869 | 3 | 0.811 |
LD | −11 | 0.311 | 5 | 0.678 |
ST | 0 | 0.963 | 8 | 0.311 |
ES | −11 | 0.116 | 3 | 0.717 |
PM | −1 | 0.839 | 2 | 0.786 |
RF | 12 | 0.376 | 7 | 0.520 |
BF | 0 | 0.941 | 1 | 0.851 |
Kinematics | −25 | 0.785 | 7 | 0.413 |
Distance Travelled between Non-Fatigue and Pre-Mechanical Failure | ||||
---|---|---|---|---|
25% | 50% | 75% | 100% | |
Change in EMG activity (%) | ||||
FCR | 3.05 ± 1.54 | 7.68 ± 0.86 | 10.99 ± 2.97 | 15.35 ± 1.72 |
BB | 1.77 ± 0.71 | 3.44 ± 0.52 | 4.79 ± 1.03 | 6.88 ± 1.04 |
TB | 1.50 ± 0.64 | 2.71 ± 0.38 | 3.59 ± 0.77 | 5.42 ± 0.76 |
DL | 2.36 ± 4.31 | 2.98 ± 0.68 | 4.07 ± 1.39 | 5.95 ± 1.37 |
LD | 1.92 ± 1.01 | 4.13 ± 1.02 | 5.09 ± 1.71 | 8.27 ± 2.05 |
ST | 1.77 ± 0.72 | 4.07 ± 0.65 | 5.96 ± 1.03 | 8.14 ± 1.29 |
ES | 1.26 ± 1.03 | 1.37 ± 0.22 | 2.24 ± 0.58 | 2.75 ± 0.43 |
PM | 1.78 ± 0.79 | 3.86 ± 0.51 | 5.16 ± 1.15 | 7.72 ± 1.02 |
RF | 1.79 ± 0.88 | 4.16 ± 1.08 | 5.67 ± 1.41 | 8.32 ± 2.16 |
BF | 1.52 ± 0.91 | 4.23 ± 0.40 | 6.11 ± 1.07 | 8.46 ± 0.81 |
Change in kinematics (%) | ||||
SF | 1.51 ± 0.64 | 3.15 ± 1.28 | 4.52 ± 1.91 | 6.12 ± 2.55 |
SL | −1.51 ± 0.64 | −3.15 ± 1.28 | −4.52 ± 1.91 | −6.12 ± 2.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puce, L.; Biz, C.; Ruaro, A.; Mori, F.; Bellofiore, A.; Nicoletti, P.; Bragazzi, N.L.; Ruggieri, P. Analysis of Kinematic and Muscular Fatigue in Long-Distance Swimmers. Life 2023, 13, 2129. https://doi.org/10.3390/life13112129
Puce L, Biz C, Ruaro A, Mori F, Bellofiore A, Nicoletti P, Bragazzi NL, Ruggieri P. Analysis of Kinematic and Muscular Fatigue in Long-Distance Swimmers. Life. 2023; 13(11):2129. https://doi.org/10.3390/life13112129
Chicago/Turabian StylePuce, Luca, Carlo Biz, Alvise Ruaro, Fabiana Mori, Andrea Bellofiore, Pietro Nicoletti, Nicola Luigi Bragazzi, and Pietro Ruggieri. 2023. "Analysis of Kinematic and Muscular Fatigue in Long-Distance Swimmers" Life 13, no. 11: 2129. https://doi.org/10.3390/life13112129