Next Article in Journal / Special Issue
The Duality between Corings and Ring Extensions
Previous Article in Journal / Special Issue
Hasse-Schmidt Derivations and the Hopf Algebra of Non-Commutative Symmetric Functions
Axioms 2012, 1(2), 155-172; doi:10.3390/axioms1020155
Article

Quasitriangular Structure of Myhill–Nerode Bialgebras

Received: 20 June 2012 / Revised: 15 July 2012 / Accepted: 17 July 2012 / Published: 24 July 2012
(This article belongs to the Special Issue Hopf Algebras, Quantum Groups and Yang-Baxter Equations)
Download PDF [278 KB, uploaded 24 July 2012]

Abstract

In computer science the Myhill–Nerode Theorem states that a set L of words in a finite alphabet is accepted by a finite automaton if and only if the equivalence relation ∼L, defined as x ∼L y if and only if xz ∈ L exactly when yz ∈ L, ∀z, has finite index. The Myhill–Nerode Theorem can be generalized to an algebraic setting giving rise to a collection of bialgebras which we call Myhill–Nerode bialgebras. In this paper we investigate the quasitriangular structure of Myhill–Nerode bialgebras.
Keywords: algebra; coalgebra; bialgebra; Myhill–Nerode theorem; Myhill–Nerode bialgebra; quasitriangular structure algebra; coalgebra; bialgebra; Myhill–Nerode theorem; Myhill–Nerode bialgebra; quasitriangular structure
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Underwood, R.G. Quasitriangular Structure of Myhill–Nerode Bialgebras. Axioms 2012, 1, 155-172.

View more citation formats

Article Metrics

Comments

Citing Articles

[Return to top]
Axioms EISSN 2075-1680 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert