Next Issue
Volume 5, September
Previous Issue
Volume 5, March
 
 

Symmetry, Volume 5, Issue 2 (June 2013) – 2 articles , Pages 119-232

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
2284 KiB  
Article
Fermi Surface Reconstruction due to Hidden Rotating Antiferromagnetism in N and P-Type High-TC Cuprates
by Mohamed Azzouz
Symmetry 2013, 5(2), 215-232; https://doi.org/10.3390/sym5020215 - 07 May 2013
Cited by 3 | Viewed by 7722
Abstract
The Fermi surface calculated within the rotating antiferromagnetism theory undergoes a topological change when doping changes from p-type to n-type, in qualitative agreement with experimental data for n-type cuprate Nd2−xCexCuO4 and p-type La2−xSrxCuO4. Also, the reconstruction of the Fermi surface, observed experimentally close [...] Read more.
The Fermi surface calculated within the rotating antiferromagnetism theory undergoes a topological change when doping changes from p-type to n-type, in qualitative agreement with experimental data for n-type cuprate Nd2−xCexCuO4 and p-type La2−xSrxCuO4. Also, the reconstruction of the Fermi surface, observed experimentally close to optimal doping in p-type cuprates, and slightly higher than optimal doping in the overdoped regime for this n-type high-TC cuprate, is well accounted for in this theory. This reconstruction is a consequence of the quantum criticality caused by the disappearance of rotating antiferromagnetism. The present results are in qualitative agreement with recently observed quantum oscillations in some high-TC cuprates. This paper presents new results about the application of the rotating antiferromagnetism theory to the study of the electronic structure for n-type materials. Full article
(This article belongs to the Special Issue Symmetries of Electronic Order)
Show Figures

Figure 1

1432 KiB  
Review
Topological Many-Body States in Quantum Antiferromagnets via Fuzzy Supergeometry
by Kazuki Hasebe and Keisuke Totsuka
Symmetry 2013, 5(2), 119-214; https://doi.org/10.3390/sym5020119 - 26 Apr 2013
Cited by 5 | Viewed by 6647
Abstract
Recent vigorous investigations of topological order have not only discovered new topological states of matter, but also shed new light on “already known” topological states. One established example with topological order is the valence bond solid (VBS) states in quantum antiferromagnets. The VBS [...] Read more.
Recent vigorous investigations of topological order have not only discovered new topological states of matter, but also shed new light on “already known” topological states. One established example with topological order is the valence bond solid (VBS) states in quantum antiferromagnets. The VBS states are disordered spin liquids with no spontaneous symmetry breaking, but most typically manifest a topological order known as a hidden string order on the 1D chain. Interestingly, the VBS models are based on mathematics analogous to fuzzy geometry. We review applications of the mathematics of fuzzy supergeometry in the construction of supersymmetric versions of VBS (SVBS) states and give a pedagogical introduction of SVBS models and their properties. As concrete examples, we present detailed analysis of supersymmetric versions of SU(2) and SO(5) VBS states, i.e., UOSp(N|2) and UOSp(N|4) SVBS states, whose mathematics are closely related to fuzzy two- and four-superspheres. The SVBS states are physically interpreted as hole-doped VBS states with a superconducting property that interpolates various VBS states, depending on the value of a hole-doping parameter. The parent Hamiltonians for SVBS states are explicitly constructed, and their gapped excitations are derived within the single-mode approximation on 1D SVBS chains. Prominent features of the SVBS chains are discussed in detail, such as a generalized string order parameter and entanglement spectra. It is realized that the entanglement spectra are at least doubly degenerate, regardless of the parity of bulk (super)spins. The stability of the topological phase with supersymmetry is discussed, with emphasis on its relation to particular edge (super)spin states. Full article
(This article belongs to the Special Issue Supersymmetry)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop