Next Article in Journal
Accuracy of Hourly Water Temperatures in Rivers Calculated from Air Temperatures
Next Article in Special Issue
Sustainable Drainage Systems
Previous Article in Journal
Stable Isotopic Analysis on Water Utilization of Two Xerophytic Shrubs in a Revegetated Desert Area: Tengger Desert, China
Previous Article in Special Issue
A Mapping of Tools for Informing Water Sensitive Urban Design Planning Decisions—Questions, Aspects and Context Sensitivity
Article Menu

Export Article

Open AccessArticle
Water 2015, 7(3), 1046-1067; doi:10.3390/w7031046

Urban Sediment Transport through an Established Vegetated Swale: Long Term Treatment Efficiencies and Deposition

1
Institute of Infrastructure and Environment, Heriot-Watt University, Edinburgh EH144AS, UK
2
Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride G750QF, UK
*
Author to whom correspondence should be addressed.
Academic Editor: Miklas Scholz
Received: 31 October 2014 / Revised: 2 March 2015 / Accepted: 4 March 2015 / Published: 12 March 2015
(This article belongs to the Special Issue Sustainable Drainage Systems)
View Full-Text   |   Download PDF [1232 KB, uploaded 9 June 2015]   |  

Abstract

Vegetated swales are an accepted and commonly implemented sustainable urban drainage system in the built urban environment. Laboratory and field research has defined the effectiveness of a vegetated swale in sediment detention during a single rainfall-runoff event. Event mean concentrations of suspended and bed load sediment have been calculated using current best analytical practice, providing single runoff event specific sediment conveyance volumes through the swale. However, mass and volume of sediment build up within a swale over time is not yet well defined. This paper presents an effective field sediment tracing methodology and analysis that determines the quantity of sediment deposited within a swale during initial and successive runoff events. The use of the first order decay rate constant, k, as an effective pollutant treatment parameter is considered in detail. Through monitoring tagged sediment deposition within the swale, the quantity of sediment that is re-suspended, conveyed, re-deposited or transported out of the swale as a result of multiple runoff events is illustrated. Sediment is found to continue moving through the vegetated swale after initial deposition, with ongoing discharge resulting from resuspension and conveyance during subsequent runoff events. The majority of sediment initially deposited within a swale is not detained long term or throughout its design life of the swale. View Full-Text
Keywords: sustainable urban drainage; vegetated swale; rare earth tracing; REO; trapping efficiency; detention; urban pollution treatment; impervious/vegetation boundary influence; first order decay; blue-green drainage network sustainable urban drainage; vegetated swale; rare earth tracing; REO; trapping efficiency; detention; urban pollution treatment; impervious/vegetation boundary influence; first order decay; blue-green drainage network
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Allen, D.; Olive, V.; Arthur, S.; Haynes, H. Urban Sediment Transport through an Established Vegetated Swale: Long Term Treatment Efficiencies and Deposition. Water 2015, 7, 1046-1067.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top