Effect of Alternating Well Water with Treated Wastewater Irrigation on Soil and Koroneiki Olive Trees
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Device
2.2. Chemical Characterization of Irrigation Water
2.3. Soil Sampling and Analysis
2.4. Plant Analysis
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Irrigation Water
3.1.1. Treated Agrifood Wastewater Mixed with Urban Wastewater
3.1.2. Treated Urban Wastewater
3.2. Effect of Irrigation by Treated Wastewater on the Soil
3.2.1. Case of Treated Mixture of Agrifood Plus Urban Wastewater
3.2.2. Case of Treated Urban Wastewater
3.3. Effect of Alternating Well Water to Wastewater Irrigation on the Soil Characteristics
- Soil pH;
- Soil Salinity;
- Soil fertility parameters;
3.4. Effect of Alternating Wastewater Irrigation by Well Water on the Leaf Mineral Content of Koroneiki Plant
4. Statistical Analysis
4.1. PCA on Irrigation Waters Samples
4.2. PCA of Soil Characteristics
5. Discussion
5.1. Physicochemical Parameters
5.2. Soil Fertility Parameters: OC, OM, TN, TP
5.3. Soil Salinity Parameters: Na+, EC and SAR
5.4. Leaf Mineral Content: Na+, K+, TP, TN
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perulli, G.D.; Bresilla, K.; Manfrini, L.; Boini, A.; Sorrenti, G.; Grappadelli, L.C.; Morandi, B. Beneficial Effect of Secondary Treated Wastewater Irrigation on Nectarine Tree Physiology. Agric. Water Manag. 2019, 221, 120–130. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated Wastewater Reuse for Irrigation: Pros and Cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Mahjoub, O.; Mauffret, A.; Michel, C.; Chmingui, W. Use of Groundwater and Reclaimed Water for Agricultural Irrigation: Farmers’ Practices and Attitudes and Related Environmental and Health Risks. Chemosphere 2022, 295, 133945. [Google Scholar] [CrossRef] [PubMed]
- Gufrankhan, M.; Daniel, G.; Konjit, M.; Thomas, A.; Eyasu, S.S.; Awoke, G. Impact of Textile Waste Water on Seed Germination and Some Physiological Parameters in Pea (Pisum Sativum L.), Lentil (Lens Esculentum L.) and Gram (Cicer Arietinum L.). Asian J. Plant Sci. 2011, 10, 269–273. [Google Scholar]
- Urbaniak, M.; Wyrwicka, A.; Tołoczko, W.; Serwecińska, L.; Zieliński, M. The Effect of Sewage Sludge Application on Soil Properties and Willow (Salix Sp.) Cultivation. Sci. Total Environ. 2017, 586, 66–75. [Google Scholar] [CrossRef]
- Ahmali, A.; Mandi, L.; Loutfi, K.; El Ghadraoui, A.; El Mansour, T.E.; El Kerroumi, A.; Hejjaj, A.; Del Bubba, M.; Ouazzani, N. Agro-Physiological Responses of Koroneiki Olive Trees (Olea Europaea L.) Irrigated by Crude and Treated Mixture of Olive Mill and Urban Wastewaters. Sci. Hortic. 2020, 263, 109101. [Google Scholar] [CrossRef]
- Leonel, L.P.; Tonetti, A.L. Wastewater Reuse for Crop Irrigation: Crop Yield, Soil and Human Health Implications Based on Giardiasis Epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
- Liu, C.; Cui, B.; Wang, J.; Hu, C.; Huang, P.; Shen, X.; Gao, F.; Li, Z. Does Short-Term Combined Irrigation Using Brackish-Reclaimed Water Cause the Risk of Soil Secondary Salinization? Plants 2022, 11, 2552. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A Transition from Conventional Irrigation to Fertigation with Reclaimed Wastewater: Prospects and Challenges. Renew. Sustain. Energy Rev. 2020, 130. [Google Scholar] [CrossRef]
- Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R.Z.; Almalki, W.H. Treatment Technologies for Olive Mill Wastewater with Impacts on Plants. Environ. Res. 2023, 216, 114399. [Google Scholar] [CrossRef]
- Elfanssi, S.; Ouazzani, N.; Mandi, L. Soil Properties and Agro-Physiological Responses of Alfalfa (Medicago Sativa L.) Irrigated by Treated Domestic Wastewater. Agric. Water Manag. 2018, 202, 231–240. [Google Scholar] [CrossRef]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Dwivedi, S.K.; Gupta, D.K. Constructed Wetland, an Eco-Technology for Wastewater Treatment: A Review on Types of Wastewater Treated and Components of the Technology (Macrophyte, Biolfilm and Substrate). J. Environ. Manag. 2021, 283, 111986. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent Research Challenges in Constructed Wetlands for Wastewater Treatment: A Review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Hajji, S.; Alla, A.A.; Noureddine, S.; Haddad, M.B.; Moukrim, A. Study of Physicochemical and Bacteriological Quality of Treated Wastewater by the New Aourir Plant (Southwestern of Morocco) Using Activated Sludge Technology in a Semi-Arid Region. J. Ecol. Eng. 2021, 22, 83–98. [Google Scholar] [CrossRef]
- Elhanafi, L.; Houhou, M.; Rais, C.; Mansouri, I.; Elghadraoui, L.; Greche, H. Impact of Excessive Nitrogen Fertilization on the Biochemical Quality, Phenolic Compounds, and Antioxidant Power of Sesamum Indicum L. Seeds. J. Food Qual. 2019, 2019, 9428092. [Google Scholar] [CrossRef]
- Pedrero, F.; Grattan, S.R.; Ben-gal, A.; Vivaldi, G.A. Opportunities for Expanding the Use of Wastewaters for Irrigation of Olives. Agric. Water Manag. 2020, 241, 106333. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ben Rouina, B.; Boukhris, M.; Ferrara, G. Effect of Irrigation with Treated Wastewater on Soil Chemical Properties and Infiltration Rate. J. Environ. Manag. 2014, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, A.M.; Gonzalez-Rubio, A.; Suarez, D.L. Impact of Treated Wastewater for Irrigation on Soil Microbial Communities. Sci. Total Environ. 2018, 622–623, 1603–1610. [Google Scholar] [CrossRef]
- Singh, P.K.; Deshbhratar, P.B.; Ramteke, D.S. Effects of Sewage Wastewater Irrigation on Soil Properties, Crop Yield and Environment. Agric. Water Manag. 2012, 103, 100–104. [Google Scholar] [CrossRef]
- SouDakouré, M.Y.; Mermoud, A.; Yacouba, H.; Boivin, P. Impacts of Irrigation with Industrial Treated Wastewater on Soil Properties. Geoderma 2013, 200–201, 31–39. [Google Scholar] [CrossRef]
- Paudel, I.; Cohen, S.; Shaviv, A.; Bar-Tal, A.; Bernstein, N.; Heuer, B.; Ephrath, J. Impact of Treated Wastewater on Growth, Respiration and Hydraulic Conductivity of Citrus Root Systems in Light and Heavy Soils. Tree Physiol. 2016, 36, 770–785. [Google Scholar] [CrossRef] [PubMed]
- Yalin, D.; Schwartz, A.; Assouline, S.; Narkis, K.; Eshel, A.; Levin, A.G.; Lowengart-Aycicegi, A.; Tarchitzky, J.; Shenker, M. Insights from “The Hidden Half”: The Impact of Root-Zone Oxygen and Redox Dynamics on the Response of Avocado to Long-Term Irrigation with Treated Wastewater in Clayey Soil. Isr. J. Plant Sci. 2017, 64, 3–4. [Google Scholar] [CrossRef]
- Muyen, Z.; Moore, G.A.; Wrigley, R.J. Soil Salinity and Sodicity Effects of Wastewater Irrigation in South East Australia. Agric. Water Manag. 2011, 99, 33–41. [Google Scholar] [CrossRef]
- Elgallal, M.; Fletcher, L.; Evans, B. Assessment of Potential Risks Associated with Chemicals in Wastewater Used for Irrigation in Arid and Semiarid Zones: A Review. Agric. Water Manag. 2016, 177, 419–431. [Google Scholar] [CrossRef]
- Beiersdorf, I.; Yermiyahu, U.; Soda, N.; Presnov, E.; Zipori, I.; Crisostomo, R.R.; Dag, A. Response of Young Bearing Olive Trees to Irrigation—Induced Salinity. Irrig. Sci. 2017, 35, 99–109. [Google Scholar] [CrossRef]
- Raveh, E.; Ben-Gal, A. Irrigation with Water Containing Salts: Evidence from a Macro-Data National Case Study in Israel. Agric. Water Manag. 2016, 170, 176–179. [Google Scholar] [CrossRef]
- Erel, R.; Eppel, A.; Yermiyahu, U.; Ben-Gal, A.; Levy, G.; Zipori, I.; Schaumann, G.E.; Mayer, O.; Dag, A. Long-Term Irrigation with Reclaimed Wastewater: Implications on Nutrient Management, Soil Chemistry and Olive (Olea Europaea L.) Performance. Agric. Water Manag. 2019, 213, 324–335. [Google Scholar] [CrossRef]
- Hashem, M.S.; Qi, X. Bin Treated Wastewater Irrigation-a Review. Water 2021, 13. [Google Scholar] [CrossRef]
- Pinto, U.; Maheshwari, B.L.; Grewal, H.S. Effects of Greywater Irrigation on Plant Growth, Water Use and Soil Properties. Resour. Conserv. Recycl. 2010, 54, 429–435. [Google Scholar] [CrossRef]
- L’analyse de l’eau_Rodier 9eme Édition, Dunod. 1994. Available online: https://books.google.com.hk/books/about/L_analyse_de_l_eau_9e_%C3%A9d.html?id=qUEGsUBZkL0C&redir_esc=y (accessed on 15 April 2023).
- Latham, M.; Quantin, P.; Aubert, G. Etude des sols de la Nouvelle-Calédonie; Centre de Nouméa, Carte d’aptitudes Culturale et Forestière Des Sols de La Nouvelle-Calédonie, ORSTOM: Paris, France, 1978; ISBN 2709905191. [Google Scholar]
- Kiziloglu, F.M.; Turan, M.; Sahin, U.; Kuslu, Y.; Dursun, A. Effects of Untreated and Treated Wastewater Irrigation on Some Chemical Properties of Cauliflower (Brassica Olerecea L. Var. Botrytis) and Red Cabbage (Brassica Olerecea L. Var. Rubra) Grown on Calcareous Soil in Turkey. Agric. Water Manag. 2008, 95, 716–724. [Google Scholar] [CrossRef]
- Tarchouna, L.G.; Merdy, P.; Raynaud, M.; Pfeifer, H.R.; Lucas, Y. Effects of Long-Term Irrigation with Treated Wastewater. Part I: Evolution of Soil Physico-Chemical Properties. Appl. Geochem. 2010, 25, 1703–1710. [Google Scholar] [CrossRef]
- Woomer, P.L.; Martin, A.; Albrecht, A.; Resck, D.V.S.; Scharpenseel, H.W. The Importance and Management of Soil Organic Matter in the Tropics. In The Biological Management of Tropical Soil Fertility; John Wiley & Sons: Hoboken, NJ, USA, 1994; pp. 47–80. [Google Scholar]
- Abegunrin, A. Effect of Kitchen Wastewater Irrigation on Soil Properties and Growth of Cucumber (Cucumis Sativus). J. Soil Sci. Environ. Manag. 2013, 4, 139–145. [Google Scholar] [CrossRef]
- Khai, N.M.; Tuan, P.T.; Vinh, N.C.; Oborn, I. Peri-Urban Agricultural Systems Effects of Using Wastewater as Nutrient Sources on Soil Chemical Properties in Peri—Urban Agricultural Systems. VNU J. Sci. Earth Environ. Sci. 2008, 24, 87–95. [Google Scholar]
- Stamatiadis, S.; Doran, J.W.; Kettler, T. Field and Laboratory Evaluation of Soil Quality Changes Resulting from Injection of Liquid Sewage Sludge. Appl. Soil Ecol. 1999, 12, 263–272. [Google Scholar] [CrossRef]
- Hussein, A.H.A. Impact of Sewage Sludge as Organic Manure on Some Soil Properties, Growth, Yield and Nutrient Contents of Cucumber Crop. J. Appl. Sci. 2009, 9, 1401–1411. [Google Scholar] [CrossRef]
- Mechri, B.; Mariem, F.B.; Baham, M.; Elhadj, S.B.; Hammami, M. Change in Soil Properties and the Soil Microbial Community Following Land Spreading of Olive Mill Wastewater Affects Olive Trees Key Physiological Parameters and the Abundance of Arbuscular Mycorrhizal Fungi. Soil Biol. Biochem. 2008, 40, 152–161. [Google Scholar] [CrossRef]
- Di Serio, M.G.; Lanza, B.; Mucciarella, M.R.; Russi, F.; Iannucci, E.; Marfisi, P.; Madeo, A. Effects of Olive Mill Wastewater Spreading on the Physico-Chemical and Microbiological Characteristics of Soil. Int. Biodeterior. Biodegrad. 2008, 62, 403–407. [Google Scholar] [CrossRef]
- Richter, D.D.B.; Hofmockel, M.; Callaham, M.A.; Powlson, D.S.; Smith, P. Long-Term Soil Experiments: Keys to Managing Earth’s Rapidly Changing Ecosystems. Soil Sci. Soc. Am. J. 2007, 71, 266–279. [Google Scholar] [CrossRef]
- Artiola, J.F.; Walworth, J.L. Irrigation Water Quality Effects on Soil Carbon Fractionation and Organic Carbon Dissolution and Leaching in a Semiarid Calcareous Soil. Soil.Sci. 2009, 174, 365–371. [Google Scholar] [CrossRef]
- Nikolskii, Y.N.; Aidarov, I.P.; Landeros-Sanchez, C.; Pchyolkin, V.V. Impact of Long-Term Freshwater Irrigation on Soil Fertility. Irrig. Drain. 2019, 68, 993–1001. [Google Scholar] [CrossRef]
- Aidarov, I.P. Regulation of the Water, Salt and Nutrients Regimes of Irrigated Lands; Agropromizdat: Moscow, Russia, 1985; pp. 42–234. [Google Scholar]
- Adejumobi, M.A.; Awe, G.O.; Abegunrin, T.P.; Oyetunji, O.M.; Kareem, T.S. Effect of Irrigation on Soil Health: A Case Study of the Ikere Irrigation Project in Oyo State, Southwest Nigeria. Environ. Monit. Assess. 2016, 188, 696. [Google Scholar] [CrossRef] [PubMed]
- Nikolskii-Gavrilov, I.; Aidarov, I.P.; Landeros-Sanchez, C.; Herrera-Gomez, S.; Bakhlaeva-Egorova, O. Evaluation of Soil Fertility Indices of Freshwater Irrigated Soils in Mexico Across Different Climatic Regions. J. Agric. Sci. 2014, 6, p98. [Google Scholar] [CrossRef]
- Arnold, R.W.; Szabolcs, I.; Targulian, V.O. Global Soil Change; International lnstitute for Applied Systems Analysis: Laxenburg, Austria, 1990. [Google Scholar]
- Molden, D. Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Routledge: Abingdon, UK, 2007; ISBN 9781849773799. [Google Scholar]
- Emongor, V.E.; Ramolemana, G.M. Treated Sewage Effluent (Water) Potential to Be Used for Horticultural Production in Botswana. Phys. Chem. Earth 2004, 29, 1101–1108. [Google Scholar] [CrossRef]
- Heidarpour, M.; Mostafazadeh-Fard, B.; Abedi Koupai, J.; Malekian, R. The Effects of Treated Wastewater on Soil Chemical Properties Using Subsurface and Surface Irrigation Methods. Agric. Water Manag. 2007, 90, 87–94. [Google Scholar] [CrossRef]
- Rahav, M.; Brindt, N.; Yermiyahu, U. Water Resources Research. J. Am. Water Resour. Assoc. 2017, 19, 2. [Google Scholar] [CrossRef]
- Leuther, F.; Schlüter, S.; Wallach, R.; Vogel, H.J. Structure and Hydraulic Properties in Soils under Long-Term Irrigation with Treated Wastewater. Geoderma 2019, 333, 90–98. [Google Scholar] [CrossRef]
- Scherer, T.F.; Franzen, D.; Cihacek, L. Soil, Water and Plant Characteristics Important to Irrigation; North Dakota State University Extension Services: Fargo, ND, USA, 1996; Volume 1675, pp. 1–16. [Google Scholar]
- Murtaza, G.; Ghafoor, A.; Qadir, M. Irrigation and Soil Management Strategies for Using Saline-Sodic Water in a Cotton-Wheat Rotation. Agric. Water Manag. 2006, 81, 98–114. [Google Scholar] [CrossRef]
- Chartzoulakis, K.S. Salinity and Olive: Growth, Salt Tolerance, Photosynthesis and Yield. Agric. Water Manag. 2005, 78, 108–121. [Google Scholar] [CrossRef]
- Tattini, M.; Bertoni, P.; Caselli, S. Genotipic Responses of Olive Plants to Sodium Chloride. J. Plant Nutr. 1992, 15, 1467–1485. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Wu, X.; Dong, L. Na+/K+ Balance and Transport Regulatory Mechanisms in Weedy and Cultivated Rice (Oryza Sativa L.) Under Salt Stress. BMC Plant Biol. 2018, 18, 375 . [Google Scholar] [CrossRef]
- Demiral, M.A. Comparative Response of Two Olive (Olea Europaea L.) Cultivars to Salinity. Turk. J. Agric. For. 2005, 29, 267–274. [Google Scholar]
- Ashraf, M. Salt Tolerance of Cotton: Some New Advances. CRC Crit. Rev. Plant Sci. 2002, 21, 1–30. [Google Scholar] [CrossRef]
- Cresti, M.; Ciampolini, F.; Tattini, M.; Cimato, A. Effect of Salinity on Productivity and Oil Quality of Olive (Olea Europaea L.). Plants 1994, 8, 1000–1005. [Google Scholar]
Parameters | Water Treatments | ||||||||
---|---|---|---|---|---|---|---|---|---|
Olive Mill Wastewater Diluted with Urban Wastewater and Mixture Treated by Various Processes | Treated Urban Wastewater | Well Water | Moroccan Norms for Irrigation Water | ||||||
CDOMW | MCW | MMSL | MAS | WWSE | WWTE | WWLG | WW | ||
pH | 7.26 ± 0.07 | 8.07 ± 0.07 | 6.79 ± 0.08 | 7.56 ± 0.02 | 8.61 ± 0.01 | 8.9 ± 0.02 | 7.91 ± 0.02 | 6.79 ± 0.08 | 6.5–8.4 |
EC (mS·cm−1) | 4.44 ± 0.07 | 7.89 ± 0.12 | 0.849 ± 0.010 | 1.54 ± 0.03 | 2.65 ± 0.03 | 2.62 ± 0.03 | 3.49 ± 0.07 | 0.849 ± 0.01 | 12 |
TSS (mg−1) | 577.78 ± 13.87 | 4.64 ± 0.12 | 36.3 ± 79.9 | 10.74 ± 0.30 | 75.80 ± 2.79 | 4.64 ± 0.12 | 129.88 ± 8.87 | 363.5 ± 79.9 | 100–200 |
DCO (mg−1) | 6100 ± 542 | 500 ± 12 | 250 ± 20 | 120 ± 10 | 45.89 ± 0.54 | 34.72 ± 0.29 | 33.28 ± 0.21 | 0 | |
PO4 (mg−1) | 9.45 ± 0.46 | 6.88 ± 0.04 | 3.55 ± 0.08 | 2.24 ± 0.11 | 1.63 ± 0.01 | 1.85 ± 0.03 | 3.33 ± 0.03 | 0.24 ± 0.001 | |
TP (mg−1) | 10.19 ± 0.48 | 0.52 ± 0.01 | 0.035 ± 0.060 | 3.18 ± 0.38 | 7.19 ± 0.48 | 8.52 ± 0.01 | 3.41 ± 0.34 | 0.035 ± 0.060 | |
NH₄⁺(mg−1) | 12.4 ± 0.94 | 0.56 ± 0.017 | 0.0086 ± 0.012 | 0.9 ± 0.014 | 1.22 ± 0.07 | 1.61 ± 0.03 | 1.53 ± 0.09 | 0.0086 ± 0.001 | |
SO₄²− (mg−1) | 232.61 ± 33.99 | 83.46 ± 11.45 | 76.97 ± 18.22 | 97.67 ± 11.95 | 35.1 ± 1.87 | 39.07 ± 1.30 | 85.02 ± 1.04 | 76.97 ± 18.22 | 250 |
NO2− (mg−1) | 2.04 ± 0.08 | 1.77 ± 0.02 | 0.004 ± 0.0061 | 1.27 ± 0.02 | 0.59 ± 0.07 | 0.48 ± 0.09 | 1.31 ± 0.05 | 0.004 ± 0.0061 | |
NO3− (mg−1) | 0.22 ± 0.047 | 2.03 ± 0.048 | 13.85 ± 15.034 | 1.09 ± 1.09 | 2.28 ± 0.08 | 1.78 ± 0.09 | 2.34 ± 0.05 | 13.85 ± 15.034 | 30 |
Cl− (mg−1) | 205.9 ± 11.71 | 738.4 ± 9.88 | 239.5 ± 62.93 | 191.7 ± 7.45 | 234.3 ± 12.85 | 241.4 ± 13.81 | 198.8 ± 7.98 | 239.5 ± 62.93 | 200 |
Ca2+ (mg−1) | 257.9 ± 1.66 | 158.4 ± 2.41 | 109.33 ± 18.47 | 107.3 ± 2.22 | 45.06 ± 1.57 | 42.85 ± 1.08 | 66.73 ± 1.31 | 109.33 ± 18.47 | |
Mg2+ (mg−1) | 229.56 ± 4.35 | 388.8 ± 5.33 | 263 ± 178.83 | 52.2 ± 3 | 122.26 ± 1.53 | 124.86 ± 2.71 | 174.13 ± 2.68 | 263.00 ± 178.83 | |
K+ (mg−1) | 281.20 ± 2.82 | 164.29 ± 2.53 | 1.04 ± 0.007 | 109.90 ± 2.11 | 43.06 ± 1.74 | 41.80 ± 1.86 | 66.93 ± 1.31 | 1.040 ± 0.007 | |
Na+ (mg−1) | 214.40 ± 3.71 | 207.60 ± 5.62 | 90.56 ± 0.01 | 138.40 ± 6.01 | 168.79 ± 4.62 | 167.71 ± 4.35 | 146.07 ± 3.64 | 90.56 ± 0.01 | 150 |
SAR | 9.68 | 10.75 | 6.63 | 11.5 | 13.35 | 12.35 | 9.66 | 6.63 |
Soil Chemical Parameters | Initial State (Before Irrigation) | Soil after Wastewater Irrigation | ||||||
---|---|---|---|---|---|---|---|---|
CDOMW | MCW | MMSL | MAS | WWSE | WWTE | WWLG | ||
pH | 8.76 ± 0.01 | 7.74 ± 0 | 7.76 ± 0.006 | 7.8 ± 0.01 | 7.78 ± 0 | 7.78 ± 0 | 7.83 ± 0 | 7.83 ± 0 |
EC (mS·cm−1) | 0.317 ± 0.04 | 0.368 ± 0.005 | 0.659 ± 0.006 | 0.538 ± 0.01 | 0.354 ± 0.003 | 0.333 ± 0.003 | 0.347 ± 0.003 | 0.41 ± 0.004 |
OC (%) | 1.95 ± 0.06 | 2.57 ± 0.0586 | 2.67 ± 0.02 | 2.68 ± 0.045 | 2.76 ± 0.0173 | 2.87 ± 0.061 | 2.76 ± 0.017 | 2.63 ± 0.04 |
OP (mg·kg−1) | 80.00 ± 0.01 | 714.12 ± 118.46 | 903.95 ± 78.289 | 768.35 ± 90.281 | 912.98 ± 160.63 | 745.75 ± 94.916 | 840.67 ± 115.85 | 940.1 ± 109.6 |
TP (mg·kg−1) | 1284 ± 152.64 | 1230.33 ± 78.3 | 1180 ± 82.61 | 1116.66 ± 82.52 | 1433.33 ± 90.04 | 1270 ± 79.3 | 1249.66 ± 80.40 | 1272 ± 83 |
TN (%) | 1.2 ± 0.1 | 0.168 ± 0.0056 | 0.1512 ± 0.0056 | 0.119 ± 0.0085 | 0.649 ± 0.476 | 0.097 ± 0.008 | 0.117 ± 0.0112 | 0.0952 ± 0.0056 |
Na+ (mg·kg−1) | 107.5 ± 35.30 | 2270 ± 17.32 | 3763.33 ± 185.831 | 2770 ± 17.32 | 2093 ± 23.09 | 2220 ± 34.64 | 2096.66 ± 46.18 | 1990 ± 34.64 |
K+ (mg·kg−1) | 780.4 ± 14.32 | 3342.66 ± 61.9 | 3138 ± 56.311 | 3414 ± 53.22 | 3578.66 ± 73.28 | 3605 ± 62.45 | 3281 ± 60.39 | 3338.33 ± 62.043 |
SAR | - | 15.16 | 25.81 | 18.92 | 14.34 | 23.92 | 15.11 | 13.91 |
ESP | - | 17.42 | 26.9 | 21.04 | 16.59 | 17.38 | 25.39 | 16.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fdil, J.; Zhou, X.; Ahmali, A.; El Alaoui El Fels, A.; Mandi, L.; Ouazzani, N. Effect of Alternating Well Water with Treated Wastewater Irrigation on Soil and Koroneiki Olive Trees. Water 2023, 15, 2988. https://doi.org/10.3390/w15162988
Fdil J, Zhou X, Ahmali A, El Alaoui El Fels A, Mandi L, Ouazzani N. Effect of Alternating Well Water with Treated Wastewater Irrigation on Soil and Koroneiki Olive Trees. Water. 2023; 15(16):2988. https://doi.org/10.3390/w15162988
Chicago/Turabian StyleFdil, Jouhayna, Xiaoliang Zhou, Abdelaali Ahmali, Abdelhafid El Alaoui El Fels, Laila Mandi, and Naaila Ouazzani. 2023. "Effect of Alternating Well Water with Treated Wastewater Irrigation on Soil and Koroneiki Olive Trees" Water 15, no. 16: 2988. https://doi.org/10.3390/w15162988