Nutrients, Organic Matter, and Trace Elements in Lake Gusinoe (Transbaikalia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borisenko, I.M.; Pronin, N.M.; Shibonov, B.B. Ecology of Lake Gusinoe Izd; BNTs SO RAN: Ulan-Ude, Russia, 1994; 186p. (In Russian) [Google Scholar]
- Bulnaev, K.B. The formation of “Transbaikal type” depressions. Tikhookeanskaya Geol. 2006, 25, 18–30. [Google Scholar]
- Lunina, O.V.; Gladkov, A.S. Fault-block structure and state of stress in the Earth’s crust of the Gusinoozersky basin and the adjacent territory, Western Transbaikal region. Geotectonics 2009, 43, 67–84. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Kobylkina, O.V.; Ripp, G.S. Role of sulfates in the formation of carbonatites in the western Transbaikal region. Dokl. Earth Sci. 2003, 388, 131–134. [Google Scholar]
- Ripp, G.S.; Khodanovich, P.Y.; Smirnova, O.K. A new carbontite province in West Transbaikalia. Russ. Geol. Geophys. 1999, 40, 73–81. [Google Scholar]
- Borkhonova, E.V. Flooding of Built-Up Areas in the Intermontane Depressions of Western Transbaikalia. Ph.D. Thesis, Publishing House of Buryat State University, Ulan-Ude, Russia, 2006; 35p. [Google Scholar]
- Sayers, M.; Bosse, K.; Fahnenstiel, G.; Shuchman, R. Carbon Fixation Trends in Eleven of the World’s Largest Lakes: 2003–2018. Water 2020, 12, 3500. [Google Scholar] [CrossRef]
- Mohamed, N.; Wellen, C.; Parsons, C.T.; Taylor, W.D.; Arhonditsis, G.; Chomicki, K.M.; Boyd, D.; Weidman, P.; Mundle, S.O.C.; van Cappellen, P.; et al. Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities. Freshw. Sci. 2019, 38, 675–691. [Google Scholar] [CrossRef]
- Bootsma, H.A. Oceans, Lakes, and Inland Seas: A Virtual Issue on the Large Lakes of the World. Limnol. Oceanogr. Bull. 2018, 27, 87–88. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.S.; Lane, S.N. Biological and chemical factors influencing shallow lake eutrophication: A lond-term study. Sci. Total Environ. 2002, 228, 167–181. [Google Scholar] [CrossRef]
- Filatov, N.N. (Ed.) The Largest Lakes-Reservoirs of the Northwest European Part of Russia: Current State and Changes of Ecosystems under Climate Variability and Anthropogenic Impact; Publishing House of Karelian Research Center of the Russian Academy of Sciences: Petrozavodsk, Russia, 2015; 200p. (In Russian) [Google Scholar]
- Efremova, T.A.; Sabylina, A.V.; Lozovik, P.A.; Zobkova, M.V.; Pasche, N. Seasonal and spatial variation in hydrochemical parameters of Lake Onego (Russia): Insights from 2016 field monitoring. Inland Waters 2019, 9, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Lozovik, P.A.; Zobkova, M.V.; Ryzhakov, A.V.; Zobkov, M.B.; Efremova, T.; Sabylina, A.V.; Efremova, T.V. Allochthonous and autochthonous organic matter in natural waters: Kinetic and thermodynamic patterns of transformation and quantitative and qualitative compositions. Dokl. Earth Sci. 2017, 477, 1510–1514. [Google Scholar] [CrossRef]
- Belkina, N.A. Phosphorus in the sediments of the Lake Onega. Izvestia: Herzen University. J. Humanit. Sci. 2015, 173, 97–109. (In Russian) [Google Scholar]
- Lozovik, P.A.; Zobkov, M.B.; Borodulina, G.S.; Tokarev, I.V. Assessing external water exchange of lake bays by water chemistry characteristics. Water Resour. 2019, 46, 91–101. [Google Scholar] [CrossRef]
- Bouffard, D.; Zdorovennov, R.E.; Zdorovennova, G.E.; Pasche, N.; Wüest, A.; Terzhevik, A.Y. Ice-covered Lake Onega: Effects of radiation on convection and internal waves. Hydrobiologia 2016, 780, 21–26. [Google Scholar] [CrossRef]
- Mahdiyan, O.; Filazzola, A.; Molot, L.A.; Gray, D.; Sharma, S. Drivers of water quality changes within the Laurentian Great Lakes region over the past 40 years. Limnol. Oceanogr. 2020, 66, 237–254. [Google Scholar] [CrossRef]
- Guiry, E.J.; Buckley, M.; Orchard, T.J.; Hawkins, A.L.; Needs-Howarth, S.; Holm, E.; Szpak, P. Deforestation caused abrupt shift in Great Lakes nitrogen cycle. Limnol. Oceanogr. 2020, 65, 1921–1935. [Google Scholar] [CrossRef] [Green Version]
- Scavia, D.; Anderson, E.J.; Dove, A.; Hill, B.; Long, C.M.; Wang, Y. Lake Huron’s Phosphorus Contributions to the St. Clair–Detroit River Great Lakes Connecting Channel. Environ. Sci. Technol. 2020, 54, 5550–5559. [Google Scholar] [CrossRef]
- Fraker, M.E.; Shrestha, A.; Marshall, L.; Mason, L.; Miller, R. Seasonal variation in light penetration and subsurface chlorophyll-α in southern Lake Michigan observed by a glider. J. Great Lakes Res. 2021, 47, 1228–1234. [Google Scholar] [CrossRef]
- Chorus, I.; Köhler, A.; Beulker, C.; Fastner, J.; van de Weyer, K.; Hegewald, T.; Hupfer, M. Decades needed for ecosystem components to respond to a sharp and drastic phosphorus load reduction. Hydrobiologia 2020, 847, 4621–4651. [Google Scholar] [CrossRef]
- Pothoven, S.A.; Vanderploeg, H.A. Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan. J. Great Lakes Res. 2020, 46, 519–527. [Google Scholar] [CrossRef]
- Larson, J.H.; James, W.F.; Fitzpatrick, F.A.; Frost, P.C.; Evans, M.A.; Reneau, P.C.; Xenopoulos, M.A. Phosphorus, nitrogen and dissolved organic carbon fluxes from sediments in freshwater rivermouths entering Green Bay (Lake Michigan; USA). Biogeochemistry 2020, 147, 179–197. [Google Scholar] [CrossRef]
- Burlakova, L.E.; Barbiero, R.P.; Karatayev, A.Y.; Daniel, S.E.; Hinchey, E.K.; Warren, G.J. The benthic community of the Laurentian Great Lakes: Analysis of spatial gradients and temporal trends from 1998 to 2014. J. Great Lakes Res. 2018, 44, 600–617. [Google Scholar] [CrossRef] [PubMed]
- Sgro, G.V.; Reavie, E.D. Fossil diatoms, geochemistry, and the Anthropocene paleolimnology of Lake Huron. J. Great Lakes Res. 2018, 44, 765–778. [Google Scholar] [CrossRef]
- Li, J.; Ianaiev, V.; Huff, A.; Zalusky, J.; Ozersky, T.; Katsev, S. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. Proc. Natl. Acad. Sci. USA 2021, 118, e2008223118. [Google Scholar] [CrossRef]
- Ciesielski, T.M.; Pastukhov, M.V.; Leeves, S.A.; Farkas, J.; Lierhagen, S.; Poletaeva, V.; Jenssen, B.M. Differential bioaccumulation of potentially toxic elements in benthic and pelagic food chains in Lake Baikal. Environ. Sci Pollut. Res. 2016, 23, 15593–15604. [Google Scholar] [CrossRef] [PubMed]
- Stroganov, M.C.; Buzinova, N.C. A Practical Guide to Hydrochemistry; Publishing House of Moscow State University: Moscow, Russia, 1980; 193p. [Google Scholar]
- State Control of Water Quality. Handbook of the Technical Committee for Standardization, 2nd ed.; IPK Standard Publishing House: Moscow, Russia, 2003; 776p. (In Russian)
- Wetzel, R.G.; Likens, G.E. Limnological Analyses; Springer: New York, NY, USA, 1991; 391p. [Google Scholar]
- Hygienic Norms HN 2.1.5.1315-03—Maximal Permissible Concentration of Chemical Substances in water of the Water Sources of Drinking and Communal Use; Ministry of Health: Moscow, Russia, 2003; 120p.
- Khazheeva, Z.I.; Plyusnin, A.M. Current State of Water Resources of Gusinoe Lake (Western Transbaikalia). Water Resour. 2018, 45, 104–110. [Google Scholar] [CrossRef]
- Calmuc, V.; Calmuc, M.; Arseni, C.; Topa, M.; Timofti, L.P.; Georgescu, C.; Iticescu, A. Comparative Approach to a Series of Physico-Chemical Quality Indices used in Assessing Water Quality in the Lower Danube. Water 2020, 12, 3239. [Google Scholar] [CrossRef]
- Calmuc, V.A.; Calmuc, M.; Arseni, M.; Topa, C.M.; Timofti, M.; Burada, A.; Iticescu, C.; Georgescu, L. Assessment of Heavy Metal Pollution Levels in Sediments and of Ecological Risk by Quality Indices, Applying a Case Study: The Lower Danube River, Romania. Water 2021, 13, 1801. [Google Scholar] [CrossRef]
- Shvartsev, S.L.; Zamana, L.V.; Plyusnin, A.M.; Tokarenko, O.G. Equilibrium of nitrogen-rich spring waters of the Baikal Rift Zone with host rock minerals as a basis for determining mechanism of thei formation. Geochem. Int. 2015, 53, 713–725. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Sklyarova, O.A.; Men’shagin, Y.V.; Danilova, M.A. Mineralized lakes of the Transbaikalia and Northeastern Mongolia: Specific features of occurrence and ore-generating potential. Geogr. Nat. Resour. 2011, 32, 323–332. [Google Scholar] [CrossRef]
- Sklyarova, O.A.; Chudnenko, K.V.; Bychinskiy, V.A. Physico-chemical simulation of the evolution of small lakes in a cold climate. Geochem. Int. 2011, 49, 827–837. [Google Scholar] [CrossRef]
- Borzenko, S.V.; Fedorov, I.A. Some trace elements behavior regularity in mineral lakes of eastern Transbaikalia. Uspekhi Sovremennogo Estestvoznaniya 2019, 1, 69–74. [Google Scholar]
- Sklyarov, E.V.; Sklyarova, O.A.; Men’shagi, Y.V. The concentration of trace elements in small lakes of Chita-Ingoda depression (Eastern Transbaikalia, Russia). Russ. Geol. Geophys. 2012, 53, 1732–1734. [Google Scholar]
- Deberdt, S.; Viers, J.; Dupre, B. New insights about the rare earth elements (REE) mobility in river waters. Bull. Soc. Geol. Fr. 2002, 173, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Pokrovski, O.S.; Schott, J. Iron colloid/organic matter associated transport of major and trace elements in small borest rivers and their estuaries (NW Russia). Chem. Geol. 2002, 190, 141–181. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjo, J.; Waldstedt, T.; Mo Carl, M.; Lychagin, M.; Chalov, S. Speciation and hydrological transport of metals in non-acidic river systems of the lake Baikal basin: Field data and model predictions. Reg. Environ. Chang. 2017, 17, 2007–2021. [Google Scholar] [CrossRef] [Green Version]
- Asgari, G.; Rahmani, A.R.; Faradma, J.; Seil Mohammadi, A.M. Kinetic and isotherm of hexavalent chromium adsorption onto nano hydroxyapatite. Res. Health Sci. 2012, 12, 45–53. [Google Scholar]
- Ahmed, I.A.M.; Hamilton-Taylor, J.; Bieroza, M.; Zhang, H.; Davidson, W. Improving and testing geochemical speciation predictions of metal ions in natural waters. Water Res. 2014, 67, 276–291. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; 312p. [Google Scholar]
- Andryushchenko, S.V.; Vorontsov, A.A.; Yarmolyuk, V.V.; Sandimirov, I.V. Evolution of Jurassic-Cretaceous magmatism in the Khambin volcanotectonic complex (Western Transbaikalia). Russ. Geol. Geophys. 2010, 51, 734–749. [Google Scholar] [CrossRef]
- Khubanov, V.B.; Vrublevskaya, T.T.; Tsygankov, A.A.; Vladimirov, A.G.; Buyantuev, M.D.; Sokolova, E.N.; Posokhov, V.F.; Khromova, E.A. Melting conditions of granitoid xenoliths in contact with Alkaline mafic magma (Gusinoozerskaya dyke, Western Transbaikalia): To the problem of the origin of Ultrapotassic acid melts. Geodyn. Tectonophys. 2017, 8, 347–368. [Google Scholar] [CrossRef] [Green Version]
- Khubanov, V.B.; Vrublevskaya, T.T.; Tsyrenova, B.T.; Tsygankov, A.A. Formation of the Trachybasalt–Trachyte Bimodal Series of the Malo_Khamardaban Volcanotectonic Complex, Southwestern Transbaikalia: Role of Fractional Crystallization and Magma Mixing. Petrology 2015, 23, 451–479. [Google Scholar] [CrossRef]
Sample Site | Location and Anthropogenic Impact |
---|---|
S1 | The inflow of the Telya river. Production areas of the electricity power station. |
S2 | The inflow warming water of the electricity power station. |
S3 | Wastewater after treatment (WWTP) from the city of Gusinoozersk inflows in Zagustai River. |
S4 | Agriculture and animal husbandry of the rural population. |
S5 | The center of the lake, involved in fishing. |
S6 | Mine water of the coal-bearing Cholboldze deposit. |
S7 | The inflow of the Tsagan-gol River that flows out from the Temnik mountain river, resting in natural conditions. The railway station is at a distance of 0.8–1.3 km. |
Parameter | Unit | Maximum Permissible Concentration |
---|---|---|
DO | mgO2·L−1 | >6 |
BOD5 | mgO2·L−1 | 3 |
NH4-N | mgN·L−1 | 0.39 |
NO3-N | mgN·L−1 | 9.0 |
PO4-P | mg·L−1 | 0.66 |
Fe | mg·L−1 | 0.3 |
Station | PO4-P | TP | NH4-N | NO3-N | Norg | TN |
---|---|---|---|---|---|---|
µg·L−1 | µg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | |
Winter | ||||||
S1 | 4–17 | 5–31 | 0–0.01 | 0.08–0.37 | 0.14–0.32 | 0.17–0.65 |
11(5) * | 24(19) | 0.004 (0.003) | 0.19 (0.22) | 0.24 (0.19) | 0.42 (0.38) | |
S2 | 2–15 | 12–32 | 0.002–0.008 | 0.12–0.35 | 0.17–0.42 | 0.27–0.54 |
11(6) | 21(17) | 0.004 (0.005) | 0.21 (0.18) | 0.24 (0.18) | 0.42 (0.38) | |
S3 | 2–19 | 12–32 | 0.002–0.004 | 0.17–0.47 | 0.16–0.38 | 0.25–0.56 |
13(8) | 24(19) | 0.003 (0.005) | 0.24 (0.28) | 0.26(0.21) | 0.48 (0.38) | |
S4 | 0–11 | 9–27 | 0–0.005 | 0.07–0.17 | 0.05–0.17 | 0.17–0.35 |
7(5) | 16(15) | 0.002 (0.003) | 0.11 (0.12) | 0.14 (0.18) | 0.25 (0.27) | |
S5 | 0–9 | 8–28 | 0–0.008 | 0.06–0.16 | 0.02–0.16 | 0.07–0.41 |
6(5) | 14(14) | 0.003 (0.003) | 0.09 (0.11) | 0.12 (0.16) | 0.26 (0.24) | |
S6 | 0–10 | 7–25 | 0–0.009 | 0.06–0.18 | 0.04–0.18 | 0.06–0.46 |
7(5) | 16(16) | 0.004 (0.003) | 0.08 (0.09) | 0.12 (0.16) | 0.29 (0.28) | |
S7 | 0–6 | 5–18 | 0–0.005 | 0.04–0.14 | 0.02–0.14 | 0.09–0.38 |
4(5) | 14(15) | 0.002 (0.002) | 0.06 (0.08) | 0.09 (0.08) | 0.19 (0.16) | |
Spring | ||||||
S1 | 0–4 | 7–15 | 0.01–0.07 | 0.14–0.27 | 0.12–0.28 | 0.27–0.56 |
2(3) | 9(8) | 0.02 (0.03) | 0.24 (0.18) | 0.18 (0.12) | 0.37 (0.38) | |
S2 | 0–5 | 6–16 | 0.008–0.08 | 0.11–0.32 | 0.09–0.29 | 0.17–0.61 |
2(3) | 11(12) | 0.04 (0.01) | 0.28 (0.21) | 0.21 (0.18) | 0.41 (0.40) | |
S3 | 1–5 | 6–19 | 0.01–0.09 | 0.19–0.43 | 0.13–0.31 | 0.29–0.74 |
3(4) | 14(12) | 0.04 (0.01) | 0.31 (0.28) | 0.28 (0.27) | 0.44 (0.41) | |
S4 | 0–3 | 4–9 | 0.003–0.014 | 0.07–0.18 | 0.07–0.16 | 0.17–0.37 |
2(5) | 6(7) | 0.008 (0.006) | 0.11 (0.08) | 0.09 (0.11) | 0.28 (0.18) | |
S5 | 0–3 | 3–8 | 0.006–0.018 | 0.06–0.16 | 0.05–0.17 | 0.11–0.35 |
1(2) | 5(6) | 0.009 (0.007) | 0.12 (0.08) | 0.11 (0.08) | 0.31 (0.18) | |
S6 | 0–3 | 2–9 | 0.007–0.01 | 0.06–0.18 | 0.05–0.18 | 0.11–0.37 |
1(2) | 5(6) | 0.009 (0.007) | 0.11 (0.09) | 0.11 (0.08) | 0.29(0.18) | |
S7 | 0–2 | 1–6 | 0.002–0.008 | 0.02–0.08 | 0.02–0.07 | 0.05–0.17 |
1(2) | 4(6) | 0.005 (0.004) | 0.05 (0.06) | 0.04 (0.02) | 0.12 (0.08) | |
Summer | ||||||
S1 | 2–7 | 5–12 | 0.008–0.015 | 0.11–0.21 | 0.12–0.27 | 0.12–0.49 |
4(4) | 9(8) | 0.011 (0.01) | 0.15 (0.12) | 0.19 (0.18) | 0.26 (0.32) | |
S2 | 2–9 | 4–14 | 0.01–0.018 | 0.09–0.27 | 0.09–0.28 | 0.11–0.56 |
5(4) | 11(8) | 0.015 (0.012) | 0.18 (0.15) | 0.21 (0.2) | 0.24 (0.38) | |
S3 | 1–11 | 5–18 | 0.01–0.021 | 0.12–0.31 | 0.12–0.31 | 0.14–0.65 |
6(5) | 12(9) | 0.018 (0.016) | 0.21 (0.18) | 0.25 (0.21) | 0.28(0.43) | |
S4 | 1–4 | 3–9 | 0.004–0.011 | 0.07–0.14 | 0.06–0.17 | 0.12–0.31 |
3(2) | 7(6) | 0.006 (0.005) | 0.11 (0.12) | 0.12 (0.11) | 0.15 (0.21) | |
S5 | 0–5 | 2–8 | 0.003–0.009 | 0.06–0.15 | 0.07–0.17 | 0.11–0.32 |
3(2) | 6(6) | 0.007 (0.006) | 0.09 (0.08) | 0.13 (0.12) | 0.12 (0.23) | |
S6 | 2–6 | 2–8 | 0.002–0.008 | 0.07–0.13 | 0.06–0.16 | 0.13–0.28 |
5(2) | 6(5) | 0.005 (0.005) | 0.11 (0.08) | 0.14 (0.13) | 0.16 (0.25) | |
S7 | 0–4 | 1–8 | 0–0.008 | 0.04–0.07 | 0.03–0.07 | 0.06–0.14 |
2(2) | 5(6) | 0.003 (0.001) | 0.05 (0.04) | 0.05 (0.04) | 0.12 (0.11) |
Station | DO | TOC | CODCr | BOD5 | C/N | C/P |
---|---|---|---|---|---|---|
Winter | ||||||
S1 | 7.1–10.2 | 6.5–9.8 | 8.3–13.2 | 1.8–3.6 | 17 | 300 |
8.3(2.2) * | 7.2(3.2) | 10.1 (1.3) | 2.3 (1.1) | |||
S2 | 7.2–11.8 | 5.8–9.2 | 7.6–15.4 | 2.1–3.5 | 17 | 347 |
8.1(2.4) | 7.3(2.9) | 11.4 (1.6) | 2.6 (1.3) | |||
S3 | 7.3–11.7 | 4.5–9.6 | 8.3–12.5 | 1.6–4.1 | 18 | 350 |
8.2(2.4) | 8.4(3.5) | 12.5 (1.7) | 2.9 (1.3) | |||
S4 | 7.8–11.2 | 3.8–7.8 | 6.2–9.4 | 1.2–2.6 | 22 | 350 |
8.8(2.4) | 5.6(2.9) | 7.8 (2.1) | 1.8 (1.2) | |||
S5 | 7.8–12.8 | 3.7–6.3 | 5.7–10.2 | 1.7–2.7 | 20 | 371 |
8.5(2.2) | 5.2(2.7) | 7.3 (1.8) | 2.1 (1.2) | |||
S6 | 7.6–11.4 | 4.3–6.7 | 6.4–9.8 | 1.5–2.3 | 18 | 337 |
8.4(2.6) | 5.4(2.7) | 8.1 (1.7) | 1.9 (1.1) | |||
S7 | 7.8–12.2 | 4.5–7.1 | 5.8–12.4 | 1.1–1.8 | 27 | 364 |
8.5(2.7) | 5.1(3.1) | 6.7 (1.5) | 1.6 (1.2) | |||
Spring | ||||||
S1 | 9.8–12.3 | 9.6–16.8 | 10.2–19.4 | 2.7–4.2 | 28 | 1130 |
10.2(2.5) | 10.2(2.8) | 16.4 (3.2) | 3.5 (0.82) | |||
S2 | 9.6–12.6 | 9.2–18.2 | 9.8–21.6 | 2.5–4.6 | 28 | 1027 |
10.2(2.8) | 11.3(2.9) | 17.8 (3.2) | 3.6 (0.84) | |||
S3 | 9.7–12.6 | 8.6–18.3 | 10.3–22.7 | 2.9–5.2 | 28 | 885 |
10.4(2.4) | 12.4(3.1) | 18.6 (2.9) | 3.9 (0.86) | |||
S4 | 8.9–11.8 | 6.7–14.8 | 9.8–18.4 | 2.1–3.6 | 29 | 1366 |
9.4(2.1) | 8.2(2.7) | 11.2 (3.1) | 2.7 (0.67) | |||
S5 | 8.7–10.9 | 7.2–15.3 | 9.4–17.6 | 2.1–3.5 | 27 | 1720 |
9.7(2.3) | 8.6(2.6) | 12.1 (2.9) | 2.9 (0.64) | |||
S6 | 8.3–11.1 | 6.3–14.7 | 9.4–18.4 | 1.9–3.2 | 30 | 1740 |
9.6(2.4) | 8.7(2.7) | 12.3 (3.1) | 2.6 (0.71) | |||
S7 | 8.5–11.2 | 5.6–15.1 | 6.2–16.2 | 1.9–2.9 | 65 | 1950 |
10.2(2.3) | 7.8(2.5) | 9.8 (2.7) | 2.4 (0.52) | |||
Summer | ||||||
S1 | 7.4–9.3 | 8.2–14.3 | 10.6–26.4 | 1.9–4.8 | 26 | 1066 |
8.6(2.9) | 9.6(3.2) | 20.7 (1.8) | 3.8 (0.95) | |||
S2 | 7.2–9.8 | 7.8–15.2 | 12.3–34.2 | 2.4–5.2 | 24 | 954 |
8.1(2.5) | 10.5(2.9) | 24.2 (1.9) | 4.1 (0.89) | |||
S3 | 7.4–9.5 | 8.2–16.4 | 11.8–36.5 | 2.4–5.3 | 27 | 1133 |
8.3(2.7) | 13.6(3.5) | 25.1 (1.7) | 4.2 (0.91) | |||
S4 | 8.2–10.6 | 6.8–12.6 | 9.8–20.4 | 1.9–4.2 | 38 | 1300 |
8.8(2.2) | 9.1(2.9) | 15.8 (1.5) | 3.1 (0.73) | |||
S5 | 8.4–11.6 | 5.7–12.3 | 10.3–22.1 | 2.1–3.6 | 34 | 1437 |
9.1(2.3) | 8.6(2.7) | 14.9 (1.6) | 2.9 (0.74) | |||
S6 | 8.2–10.5 | 6.3–12.7 | 11.1–23.4 | 1.9–3.9 | 35 | 1533 |
8.9(2.1) | 9.2(2.7) | 16.4 (1.4) | 2.9 (0.84) | |||
S7 | 8.6–9.4 | 5.6–14.2 | 9.5–18.6 | 1.6–3.4 | 70 | 1680 |
9.1(2.1) | 8.4(3.1) | 13.7 (1.3) | 2.7 (0.91) |
Element | S1 | S2 | S3 | S4 | S5 | S6 | S7 | Detection Limit |
---|---|---|---|---|---|---|---|---|
Li | 20.21 | 19.41 | 19.59 | 19.38 | 20.07 | 19.45 | 1.38 | 0.057 |
Al | 4.31 | 3.48 | 3.94 | 2.30 | 2.72 | 4.13 | 5.86 | 2.62 |
V | 0.979 | 0.834 | 0.799 | 0.751 | 0.801 | 0.742 | 0.054 | 0.0035 |
Cr | 0.047 | 0.045 | 0.035 | 0.035 | 0.041 | 0.036 | 0.066 | 0.017 |
Mn | 1.09 | 1.65 | 2.39 | 1.11 | 0.54 | 0.28 | 0.56 | 0.024 |
Fe | 2.10 | 3.82 | 5.20 | 1.59 | 1.11 | 1.06 | 103.59 | 0.56 |
Co | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.0014 |
Ni | 0.26 | 0.30 | 0.29 | 0.25 | 0.31 | 0.28 | 0.20 | 0.024 |
Cu | 1.01 | 1.61 | 1.47 | 0.89 | 1.16 | 0.77 | 0.40 | 0.052 |
Zn | 0.99 | 1.06 | 1.16 | 4.63 | 1.46 | 0.96 | 1.26 | 0.12 |
Ga | 0.014 | 0.008 | 0.008 | 0.004 | 0.006 | 0.005 | 0.001 | 0.0135 |
Ge | 0.029 | 0.033 | 0.018 | 0.022 | 0.020 | 0.021 | 0.007 | 0.0024 |
As | 0.992 | 0.987 | 0.994 | 0.985 | 1.013 | 0.935 | 0.160 | 0.011 |
Rb | 1.31 | 1.25 | 1.24 | 1.21 | 1.28 | 1.25 | 0.59 | 0.0087 |
Sr | 952.08 | 929.46 | 925.36 | 920.69 | 961.00 | 938.19 | 99.07 | 0.14 |
Y | 0.0266 | 0.0188 | 0.0183 | 0.0153 | 0.0162 | 0.0197 | 0.0312 | 0.0006 |
Nb | 0.0448 | 0.0025 | 0.0020 | 0.0017 | 0.0018 | 0.0039 | 0.0053 | 0.0032 |
Mo | 16.15 | 13.99 | 13.01 | 13.04 | 13.15 | 13.12 | 0.65 | 0.057 |
Cd | 0.101 | 0.098 | 0.088 | 0.082 | 0.096 | 0.083 | 0.025 | 0.0016 |
Ba | 20.80 | 20.37 | 20.23 | 20.28 | 21.40 | 21.13 | 9.01 | 0.040 |
La | 0.0184 | 0.0392 | 0.0133 | 0.0101 | 0.0095 | 0.0119 | 0.0355 | 0.011 |
Ce | 0.0183 | 0.0232 | 0.0239 | 0.0098 | 0.0060 | 0.0421 | 0.0291 | 0.0022 |
Pr | 0.0401 | 0.0020 | 0.0019 | 0.0014 | 0.0015 | 0.0031 | 0.0074 | 0.0003 |
Nd | 0.0178 | 0.0087 | 0.0076 | 0.0058 | 0.0066 | 0.0080 | 0.0343 | 0.0020 |
Sm | 0.0039 | 0.0049 | 0.0046 | 0.0026 | 0.0043 | 0.0056 | 0.0095 | 0.0003 |
Eu | 0.0116 | 0.0106 | 0.0102 | 0.0096 | 0.0102 | 0.0101 | 0.0057 | 0.0004 |
Gd | 0.0052 | 0.0038 | 0.0042 | 0.0039 | 0.0052 | 0.0034 | 0.0083 | 0.0003 |
Tb | 0.0005 | 0.0006 | 0.0007 | 0.0007 | 0.0006 | 0.0007 | 0.0016 | 0.0009 |
Dy | 0.0048 | 0.0044 | 0.0030 | 0.0031 | 0.0032 | 0.0046 | 0.0073 | 0.0002 |
Ho | 0.0011 | 0.0008 | 0.0006 | 0.0006 | 0.0007 | 0.0010 | 0.0016 | 0.0003 |
Er | 0.0045 | 0.0021 | 0.0022 | 0.0026 | 0.0022 | 0.0026 | 0.0051 | 0.0006 |
Tm | 0.0012 | 0.0006 | 0.0008 | 0.0006 | 0.0006 | 0.0006 | 0.0009 | 0.0001 |
Yb | 0.0057 | 0.0028 | 0.0024 | 0.0033 | 0.0025 | 0.0034 | 0.0057 | 0.0005 |
Lu | 0.0011 | 0.0006 | 0.0008 | 0.0006 | 0.0007 | 0.0007 | 0.0013 | 0.0005 |
Ta | 0.0350 | 0.0004 | 0.0003 | 0.0003 | 0.0004 | 0.0004 | 0.0003 | 0.0002 |
W | 0.560 | 0.418 | 0.415 | 0.422 | 0.394 | 0.399 | 0.012 | 0.011 |
Pb | 0.149 | 0.183 | 0.083 | 0.077 | 0.177 | 0.401 | 0.110 | 0.014 |
Th | 0.0082 | 0.0027 | 0.0034 | 0.0013 | 0.0030 | 0.0023 | 0.0088 | 0.0018 |
U | 1.819 | 1.696 | 1.905 | 1.690 | 1.274 | 1.452 | 0.102 | 0.011 |
ΣLREE | 0.016 | 0.011 | 0.010 | 0.009 | 0.010 | 0.011 | 0.010 | |
ΣHREE | 0.011 | 0.007 | 0.007 | 0.007 | 0.007 | 0.008 | 0.014 | |
ΣREE | 0.028 | 0.018 | 0.018 | 0.016 | 0.017 | 0.018 | 0.024 | |
Ce/Ce* | 0.089 | 0.429 | 0.997 | 0.543 | 0.342 | 1.504 | 0.390 | |
Eu/Eu* | 11.088 | 10.704 | 10.208 | 12.779 | 9.411 | 10.010 | 2.818 | |
(La/Yb)N | 0.312 | 1.358 | 0.531 | 0.294 | 0.362 | 0.340 | 0.606 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazheeva, Z.I.; Plyusnin, A.M.; Smirnova, O.K.; Peryazeva, E.G.; Sanzhanova, S.S.; Zhambalova, D.I.; Doroshkevich, S.G.; Dabaeva, V.V. Nutrients, Organic Matter, and Trace Elements in Lake Gusinoe (Transbaikalia). Water 2021, 13, 2958. https://doi.org/10.3390/w13212958
Khazheeva ZI, Plyusnin AM, Smirnova OK, Peryazeva EG, Sanzhanova SS, Zhambalova DI, Doroshkevich SG, Dabaeva VV. Nutrients, Organic Matter, and Trace Elements in Lake Gusinoe (Transbaikalia). Water. 2021; 13(21):2958. https://doi.org/10.3390/w13212958
Chicago/Turabian StyleKhazheeva, Zinaida Ivanovna, Aleksey Maksimovich Plyusnin, Olga Konstantinovna Smirnova, Elena Georgievna Peryazeva, Seseg Sergeevna Sanzhanova, Dashima Ivanovna Zhambalova, Svetlana Gennadievna Doroshkevich, and Viktoriya Valerievna Dabaeva. 2021. "Nutrients, Organic Matter, and Trace Elements in Lake Gusinoe (Transbaikalia)" Water 13, no. 21: 2958. https://doi.org/10.3390/w13212958