Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model
Abstract
:1. Introduction
2. Methodologies
2.1. Mann–Kendall Trend Test Method
2.2. The Linear Quantile Regression (QR-L) Model
2.3. The Non-Linear Quantile Regression Model of Cubic B-Spline (QR-CB) Model
2.4. The Cubic B-Spline-Based GAMLSS Model (GAMLSS-CB)
2.4.1. Model Definition
2.4.2. Model Evaluation Criteria
2.5. Model Performance Test
2.5.1. Model Probability Coverage Test
2.5.2. Filliben Test
2.6. Design Flood Value
3. Study Areas and Data
4. Results
4.1. Mann–Kendall Trend Analysis
4.2. Determination of Optimal GAMLSS-CB Model
4.3. Comparison of Model Performance
4.3.1. Qualitative Analysis of Model Performance
4.3.2. Quantitative Analysis of Model Performance
4.4. Design Values of GAMLSS-CB Model
5. Discussion
6. Conclusions
- (1)
- Through the Mann–Kendall trend test, it is concluded that both Huaxian station and Xianyang station showed a significantly decreasing trend, while Gaodao station showed a significantly increasing trend. In addition, Dahuangjiangkou station showed no significant upward trend.
- (2)
- The gamma distribution is the optimal distribution when using the GAMLSS-CB model. The non-stationary gamma distribution with both location parameters and scale parameters changing with time had the best performance for Huaxian and Xianyang stations, while for Gaodao and Dahuangjiangkou stations the optimal models were non-stationary gamma distribution with location parameters changing with time and the scale parameters remaining unchanged.
- (3)
- The GAMLSS-CB model showed the best model performance compared with the QR-L and QR-CB models, based on qualitative and quantitative analysis. When the design flood values are estimated based on the GAMLSS-CB model using the ADLL method, the design values are not affected by the distribution of sample points. The non-stationary design flood values estimated by the ADLL method are reasonable and reliable. It can be used for non-stationary engineering design due to its linkage with the design period of projects under changing environments.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, X.; Zhang, Q.; Singh, V.P.; Xiao, M.; Cheng, J. Nonstationarity-based evaluation of flood risk in the Pearl River basin: Changing patterns, causes and implications. Hydrol. Sci. J. 2017, 62, 246–258. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Q.; Singh, V.P.; Song, C.; Sun, P.; Li, J. Potential contributions of climate change and urbanization to precipitation trends across China at national, regional and local scales. Int. J. Climatol. 2019, 39, 2998–3012. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, Z.; Singh, V.P.; Zhang, X.; Wang, J.; Li, B. Concept of equivalent reliability for estimating the design flood under non-stationary conditions. Water Resour. Manag. 2018, 32, 997–1011. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, J.; Hu, Y.; Wang, J.; Li, B.; Zhao, J. A sample reconstruction method based on a modified reservoir index for flood frequency analysis of non-stationary hydrological series. Stoch. Env. Res. Risk Assess. 2017, 32, 1561–1571. [Google Scholar] [CrossRef]
- Li, J.; Lei, Y.; Tan, S.; Bell, C.D.; Engel, B.A.; Wang, Y. Nonstationary flood frequency analysis for annual flood peak and volume series in both univariate and bivariate domain. Water Resour. Manag. 2018, 32, 4239–4252. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Y.; Wang, Y.; Zhang, T.; Feng, P.; Engel, B.A. Improved mixed distribution model considering historical extraordinary floods under changing environment. Water 2018, 10, 1016. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ma, Q.; Tian, Y.; Lei, Y.; Zhang, T.; Feng, P. Flood scaling under nonstationarity in Daqinghe River basin, China. Nat. Hazards 2019, 98, 675–696. [Google Scholar] [CrossRef]
- Salas, J.D.; Obeysekera, J.; Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrol. Sci. J. 2018, 63, 325–352. [Google Scholar] [CrossRef]
- Song, X.; Lu, F.; Wang, H.; Xiao, W.; Zhu, K. Penalized maximum likelihood estimators for the nonstationary Pearson type 3 distribution. J. Hydrol. 2018, 567, 579–589. [Google Scholar] [CrossRef]
- Xiong, L.; Yan, L.; Du, T.; Yan, P.; Li, L.; Xu, W. Impacts of Climate Change on Urban Extreme Rainfall and Drainage Infrastructure Performance: A Case Study in Wuhan City, China. Irrig. Drain. 2019, 68, 152–164. [Google Scholar] [CrossRef]
- Zeng, H.; Feng, P.; Li, X. Reservoir flood routing considering the non-stationarity of flood series in North China. Water Resour. Manag. 2014, 28, 4273–4287. [Google Scholar] [CrossRef]
- Zeng, H.; Sun, X.; Lall, U.; Feng, P. Nonstationary extreme flood/rainfall frequency analysis informed by large-scale oceanic fields for Xidayang Reservoir in North China. Int. J. Climatol. 2017, 37, 3810–3820. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Wang, B.; Tan, S.; Feng, P. Nonstationary flood frequency analysis using univariate and bivariate time-varying models based on GAMLSS. Water 2018, 10, 819. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Xiong, L.; Yan, L.; Dong, J.; Xu, C. Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice. Hydrol. Earth Syst. Sci. 2019, 23, 1683–1704. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Jiang, S.; Hu, X.; Li, C. Evaluation of return period and risk in bivariate non-stationary flood frequency analysis. Water 2019, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Demoulin, V.; Davison, A.C.; McNeil, A.J. Estimating Value-at-Risk: A point process approach. Quant Financ. 2005, 5, 227–234. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Review of dependence modeling in hydrology and water resources. Prog. Phys. Geogr. 2016, 40, 549–578. [Google Scholar] [CrossRef]
- He, Y.; Bárdossy, A.; Brommundt, J. Non-stationary flood frequency analysis in southern Germany. In Proceedings of the 7th International Conference on HydroScience and Engineering (ICHE 2006), Philadelphia, PA, USA, 10–13 September 2006. [Google Scholar]
- Khalip, M.N.; Ouarda, T.B.M.J.; Ondo, J.-C.; Gachon, P.; Bobée, B. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. J. Hydrol. 2006, 329, 534–552. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv. Water Resour. 2009, 32, 1255–1266. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Napolitano, F. Nonstationary modeling of a long record of rainfall and temperature over Rome. Adv. Water Resour. 2010, 33, 1256–1267. [Google Scholar] [CrossRef]
- Gao, J. Study on the spatiotemporal characteristics of extreme precipitation in Yalong River Basin based on GAMLSS model. Water Power 2019, 4, 13–17, 56, (In Chinese with English Abstract). [Google Scholar]
- Su, C.; Chen, X. Assessing the effects of reservoirs on extreme flows using nonstationary flood frequency models with the modified reservoir index as a covariate. Adv. Water Resour. 2019, 124, 29–40. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Ruan, G.; Xu, C.Y.; Yan, P.; Liu, P. Reducing uncertainty of design floods of two-component mixture distributions by utilizing flood timescale to classify flood types in seasonally snow covered region. J. Hydrol. 2019, 574, 588–608. [Google Scholar] [CrossRef]
- Yan, L.; Li, L.; Yan, P.; He, H.; Li, J.; Lu, D. Nonstationary flood hazard analysis in response to climate change and population growth. Water 2019, 11, 1811. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Bassett, G. Regression quantiles. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Barbosa, M.S. Quantile trends in Baltic sea level. Geophys. Res. Lett. 2008, 35, L22704. [Google Scholar] [CrossRef]
- Mazvimavi, D. Investigating changes over time of annual rainfall in Zimbabwe. Hydrol. Earth Syst. Sci. 2010, 14, 2671–2679. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Killick, R.; Fu, X. Distributional change of monthly precipitation due to climate change: Comprehensive examination of dataset in southeastern United States. Hydrol. Process. 2014, 28, 5212–5219. [Google Scholar] [CrossRef]
- Feng, P.; Shang, S.; Li, X. Temporal variation characteristics of annual precipitation and runoff in Luan River basin based on quantile regression. J. Hydroelectr. Eng. 2016, 35, 28–36, (In Chinese with English Abstract). [Google Scholar]
- Nasri, B.; Bouezmarni, T.; André, S.H.; Ouarda, B.M.J.T. Non-stationary hydrologic frequency analysis using B-spline quantile regression. J. Hydrol. 2017, 554, 532–544. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, W.; Koenker, R. Hierarchical spline models for conditional quantiles and the demand for electricity. J. Am. Stat. Assoc. 1992, 87, 58–68. [Google Scholar] [CrossRef]
- Nasri, B.; Adlouni, E.S.; Ouarda, B.M.J.T. Bayesian estimation for GEV-B-Spline model. Open J. Syst. 2013, 3, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Parey, S.; Malek, F.; Laurent, C.; Dacunha-Castelle, D. Trends and climate evolution: Statistical approach for very high temperatures in France. Clim. Chang. 2007, 81, 331–352. [Google Scholar] [CrossRef] [Green Version]
- Parey, S.; Hoang, T.T.H.; Dacunhacastelle, D. Different ways to compute temperature return levels in the climate change context. Environmetrics 2010, 21, 698–718. [Google Scholar] [CrossRef]
- Cooley, D. Return periods and return levels under climate change. In Extremes in a Changing Climate; AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 65, pp. 97–114. [Google Scholar]
- Rootzén, H.; Katz, R.W. Design life level: Quantifying risk in a changing climate. Water Resour. Res. 2013, 49, 5964–5972. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Xiong, L.; Guo, S.; Xu, C.Y.; Xia, J.; Du, T. Comparison of four nonstationary hydrologic design methods for changing environment. J. Hydrol. 2017, 551, 132–150. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.; Liu, D.; Hu, T.; Xu, C.Y. Frequency analysis of nonstationary annual maximum flood series using the time-varying two-component mixture distribution. Hydrol. Process. 2017, 31, 69–89. [Google Scholar] [CrossRef]
- López, R.A.J.; Francés, F. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrol. Earth Syst. Sci. 2013, 17, 3189–3203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Lu, F.; Zhou, X.; Chen, F.; Geng, S.; Guo, W. GAMLSS model-based analysis on nonstationarity of extreme precipitation in Daduhe River Basin. Water Resour. Hydr. Eng. 2016, 47, 12–20, (In Chinese with English Abstract). [Google Scholar]
- Hu, Y.; Liang, Z.; Yang, H.; Chen, D. Study on frequency analysis method of nonstationary observation series based on trend analysis. J. Hydroelectr. Eng. 2013, 32, 21–24, (In Chinese with English Abstract). [Google Scholar]
- Scherer, K. Uniqueness of best parametric interpolation by cubic spline curves. Constr. Approx. 1997, 13, 393–419. [Google Scholar] [CrossRef]
- Xiong, L.; Jiang, C.; Du, T. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River. Water Sci. Technol. 2014, 70, 939–946. [Google Scholar] [CrossRef]
- Rigby, A.R.; Stasinopoulos, D.M. Generalized additive models for location scale and shape. J. R. Stat. Soc. C-Appl. 2005, 54, 507–554. [Google Scholar] [CrossRef] [Green Version]
- Filliben, J.J. The probability plot correlation coefficient test for normality. Technometrics 1975, 17, 111–117. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Zhou, J.; Fei, J.; Xie, X. Coupling climate change with hydrological dynamic in Qinling Mountains, China. Clim. Chang. 2009, 94, 409–427. [Google Scholar] [CrossRef]
- Cui, W.; Chen, J.; Wu, Y.; Wu, Y. An overview of water resources management of the Pearl River. Water Sci. Technol. 2007, 7, 101–113. [Google Scholar] [CrossRef]
- Du, T.; Xiong, L.; Xu, C.; Gippel, C.J.; Guo, S.; Liu, P. Return period and risk analysis of nonstationary low-flow series under climate change. J. Hydrol. 2015, 527, 234–250. [Google Scholar] [CrossRef] [Green Version]
- Myoung-Jin, U.; Yeonjoo, K.; Momcilo, M.; Donald, W. Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities. J. Hydrol. 2017, 552, 396–406. [Google Scholar]
Basin | Station | Control Basin Area/(km2) | Longitude | Latitude | Data Period |
---|---|---|---|---|---|
Pearl River | Gaodao | 7007 | 113.17 | 24.16 | 1954–2014 |
Dahuangjiangkou | 288,544 | 110.20 | 23.58 | 1954–2009 | |
Weihe River | Xianyang | 46,827 | 108.70 | 34.32 | 1954–2011 |
Huaxian | 106,498 | 109.76 | 34.58 | 1951–2012 |
Mann–Kendall Test | Huaxian | Gaodao | Dahuangjiangkou | Xianyang |
---|---|---|---|---|
P value | 2.117 × 10−5 | 3.596 × 10−2 | 5.727 × 10−2 | 3.236 × 10−4 |
|Zc| | 4.2522 | 2.0974 | 1.9013 | 3.5956 |
S | −701 | 338 | 270 | −537 |
Models | Huaxian | Gaodao | Dahuangjiangkou | Xianyang |
---|---|---|---|---|
GA_L0_S0 | 1067.70 | 1061.64 | 1159.68 | 969.63 |
GA_Lt_S0 | 1054.85 | 1060.90 | 1157.02 | 961.10 |
GA_L0_St | 1070.72 | 1061.30 | 1162.43 | 967.90 |
GA_Lt_St | 1054.82 | 1062.00 | 1158.25 | 960.70 |
LN_L0_S0 | 1069.93 | 1063.52 | 1161.63 | 974.87 |
LN_Lt_S0 | 1055.30 | 1065.35 | 1158.33 | 962.34 |
LN_L0_St | 1074.37 | 1062.89 | 1164.26 | 972.17 |
LN_Lt_St | 1055.15 | 1064.75 | 1159.39 | 961.94 |
GEV_L0_S0 | 1073.05 | 1063.11 | 1159.98 | 974.70 |
GEV_Lt_S0 | 1070.33 | 1068.79 | 1161.86 | 972.10 |
GEV_L0_St | 1075.58 | 1061.00 | 1158.39 | 977.23 |
GEV_Lt_St | 1068.71 | 1064.02 | 1160.38 | 975.24 |
Station | Model | Quantile/% | ||||
---|---|---|---|---|---|---|
5 | 25 | 50 | 75 | 95 | ||
Huaxian | QR-L | 6.45 | 24.19 | 45.16 | 75.81 | 93.55 |
QR-CB | 3.23 | 22.58 | 50.00 | 72.58 | 95.16 | |
GAMLSS-CB | 4.84 | 35.48 | 46.77 | 69.35 | 96.77 | |
Gaodao | QR-L | 3.28 | 21.31 | 44.26 | 73.77 | 95.08 |
QR-CB | 4.92 | 24.59 | 52.46 | 72.13 | 95.08 | |
GAMLSS-CB | 4.92 | 18.03 | 50.82 | 77.05 | 93.44 | |
Dahuangjiangkou | QR-L | 5.36 | 25.00 | 50.00 | 75.00 | 96.43 |
QR-CB | 3.57 | 23.21 | 50.00 | 75.00 | 96.43 | |
GAMLSS-CB | 3.57 | 26.79 | 44.64 | 76.79 | 94.64 | |
Xianyang Station | QR-L | 5.17 | 24.14 | 50.00 | 72.41 | 96.55 |
QR-CB | 3.45 | 22.41 | 55.17 | 72.41 | 94.83 | |
GAMLSS-CB | 5.17 | 29.31 | 48.28 | 75.86 | 94.83 |
Models | Huaxian | Gaodao | Dahuangjiangkou | Xianyang |
---|---|---|---|---|
QR-L | 0.9831 | 0.9831 | 0.9835 | 0.9830 |
QR-CB | 0.9793 | 0.9835 | 0.9715 | 0.9548 |
GAMLSS-CB | 0.9871 | 0.9834 | 0.9913 | 0.9968 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, C.; Li, J.; Yan, L.; Yan, P.; Cheng, F.; Lu, D. Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model. Water 2020, 12, 1867. https://doi.org/10.3390/w12071867
Qu C, Li J, Yan L, Yan P, Cheng F, Lu D. Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model. Water. 2020; 12(7):1867. https://doi.org/10.3390/w12071867
Chicago/Turabian StyleQu, Chunlai, Jing Li, Lei Yan, Pengtao Yan, Fang Cheng, and Dongyang Lu. 2020. "Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model" Water 12, no. 7: 1867. https://doi.org/10.3390/w12071867