Assessments of Impacts of Climate and Forest Change on Water Resources Using SWAT Model in a Subboreal Watershed in Northern Da Hinggan Mountains
Abstract
:1. Introduction
2. Study Watershed and Data Collection
2.1. Study Watershed
2.2. Datasets Used in the Study
3. Methodologies
3.1. Division of Forest Change Periods
3.2. Hydrological Model: SWAT
3.3. Impacts of Climate Change under CMIP5 RCP Scenarios on the Runoff
4. Results
4.1. Calibration and Validation for the SWAT model
4.2. Contribution Evaluation of Climate Variability and Forest Change on River Discharge
4.3. Assessment of Future River Discharge under CMIP5 RCP Scenarios by the SWAT Model
4.3.1. Future Climate Change
4.3.2. Response of Future Annual and Seasonal River Discharge to Climate Change
5. Discussion
5.1. Discussion
5.2. Limitations and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Liu, N.; Harper, R.J.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wei, X.; Zhang, M.; Liu, W.; Fan, H.; Zhou, G.; Giles-Hansen, K.; Liu, S.; Wang, Y. Forest cover change and water yield in large forested watersheds: A global synthetic assessment. Ecohydrology 2017, 10, e1838. [Google Scholar] [CrossRef]
- Li, Q.; Wei, X.; Zhang, M.; Liu, W.; Giles-Hansen, K.; Wang, Y. The cumulative effects of forest disturbance and climate variability on streamflow components in a large forest-dominated watershed. J. Hydrol. 2018, 557, 448–459. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Luo, Y.; Zhang, M.; Li, Y.; Qiao, Y.; Liu, H.; Wang, C. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: a Precipitation and Evaporation Perspective. Curr. Clim. Chang. Rep 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Zeng, Z.; Lian, Y.; Bai, X. Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agric. For. Meteorol. 2018, 249, 149–162. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Gao, H.; Zhang, W. Climate change and anthropogenic impacts on wetland and agriculture in the Songnen and Sanjiang plain, Northeast China. Remote. Sens. 2018, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- An, S.; Li, H.; Guan, B.; Zhou, C.; Wang, Z.; Deng, Z.; Zhi, Y.; Liu, Y.; Xu, C.; Fang, S.; et al. China’s natural wetlands: Past problems, current status, and future challenges. Ambio 2007, 36, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Song, S.; Sun, W.; Mu, X.; Wang, S.; Li, J.; Li, Y. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res. 2015, 157, 137–152. [Google Scholar] [CrossRef]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T.; Li, Q. Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern China. Hydrol. Process. 2017, 31, 1938–1951. [Google Scholar] [CrossRef]
- Duan, L.; Cai, T. Quantifying impacts of forest recovery on water yield in two large watersheds in the cold region of Northeast China. Forest 2018, 9, 392. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Sun, G.; Cai, T.; Hallema, D.W.; Duan, L. Water yield responses to gradual changes in forest structure and species composition in a subboreal watershed in northeastern China. Forest 2019, 10, 211. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Jury, M.R. Statistical evaluation of CMIP5 climate change model simulations for the Ethiopian highlands. Int. J. Clim. 2014, 35, 37–44. [Google Scholar] [CrossRef]
- Climate Change 2013 The Physical Science Basis. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (accessed on 27 May 2020).
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: an overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Gatzke, S.E.; Zhang, M. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California. Environ. Pollut. 2010, 158, 223–234. [Google Scholar] [CrossRef]
- Abbaspour, K.; Vaghefi, S.A.; Srinivasan, R. A Guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Uniyal, B.; Jha, M.K.; Verma, A.K. Assessing climate change impact on water balance components of a river basin using SWAT model. Water Resour. Manag. 2015, 29, 4767–4785. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, W.; Yin, Z.; Fu, G.; Zheng, C. How will climate change affect the water availability in the Heihe River Basin, northwest China? J. Hydrometeorol. 2016, 17, 1517–1542. [Google Scholar] [CrossRef]
- Sellami, H.; Benabdallah, S.; La Jeunesse, I.; Vanclooster, M. Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Sci. Total. Environ. 2016, 543, 924–936. [Google Scholar] [CrossRef]
- Mittal, N.; Bhave, A.G.; Mishra, A.; Singh, R. Impact of human intervention and climate change on natural flow regime. Water Resour. Manag. 2015, 30, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Dong, G.; Zheng, D.; Xiao, H.; Gao, Y.; Lang, Y. Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China. Ecol. Model. 2011, 222, 3701–3717. [Google Scholar] [CrossRef]
- Sun, C.; Ren, L. Assessment of surface water resources and evapotranspiration in the Haihe River basin of China using SWAT model. Hydrol. Process. 2012, 27, 1200–1222. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, P.-A.; Chen, J.; Bing, J.; Xu, D.; Wang, M.-L. Impacts of climate change and human activities on the Three Gorges Reservoir inflow. Water 2017, 9, 957. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Chen, Y.; Xu, C.; Li, W. Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years. Water Resour. Manag. 2007, 22, 1159–1171. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M. Simulated runoff and sediment yield responses to land-use change using the SWAT model in northeast China. Water 2019, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Cai, T.; Fu, G.; Zhang, A.; Liu, C.; Yu, H. The streamflow trend in Tangwang River basin in northeast China and its difference response to climate and land use change in sub-basins. Environ. Earth Sci. 2012, 69, 51–62. [Google Scholar] [CrossRef]
- Liu, J.; Shangguan, D.; Liu, S.-Y.; Ding, Y. Evaluation and hydrological simulation of CMADS and CFSR reanalysis datasets in the Qinghai-Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Fu, Q.; Shi, R.; Li, T.; Sun, Y.; Liu, N.; Cui, S.; Hou, R. Effects of land-use change and climate variability on streamflow in the Woken River basin in Northeast China. River Res. Appl. 2019, 35, 121–132. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; DiLuzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Wei, X.; Liu, W.; Zhou, P. Quantifying the relative contributions of forest change and climatic variability to hydrology in large watersheds: A critical review of research methods. Water 2013, 5, 728–746. [Google Scholar] [CrossRef]
- Liu, W.; Wei, X.; Fan, H.; Guo, X.; Liu, Y.; Zhang, M.; Li, Q. Response of flow regimes to deforestation and reforestation in a rain-dominated large watershed of subtropical China. Hydrol. Process. 2015, 29, 5003–5015. [Google Scholar] [CrossRef]
- Dung, B.X.; Gomi, T.; Miyata, S.; Sidle, R.C. Peak flow responses and recession flow characteristics after thinning of Japanese cypress forest in a headwater catchment. Hydrol. Res. Lett. 2012, 6, 35–40. [Google Scholar] [CrossRef]
- Tian, Y.; Man, X.; Liu, X.; Li, Y. Research on rainfall redistribution of Betula platyphylla secondary forests innorth of Da Hinggan Mountains. J. Soil Water Conserv. 2014, 3, 119–123. [Google Scholar]
- Sheng, H.C.; Cai, T.J.; Li, Y.; Liu, Y.J. Rainfall redistribution in Larix gmelinii forest on northern of Daxing’an Mountains, Northeast of China. J. Soil Water Conserv. 2014, 28, 101–105. (in Chinese). [Google Scholar]
- Yu, Z.; Cai, T.; Zhu, B. Characteristics of snowpack in major forest types of northern Daxing’anling Mountains, northeastern China. J. Beijing For. Univ. 2015, 37, 100–107. [Google Scholar]
- Zhang, Y.; Wang, C. Transpiration of boreal and temperate forests. Chin. J. Appl. Environ. Biol. 2008, 14, 838–845. [Google Scholar]
- Chouaib, W.; Miniat, C.F.; Elliott, K.J.; Swank, W.T.; Brantley, S.T.; Laseter, S.H. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Glob. Chang. Boil. 2016, 22, 2997–3012. [Google Scholar]
- Guo, Y.; Shen, Y.-J. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. J. Hydrol. 2016, 540, 257–273. [Google Scholar] [CrossRef]
- Xia, J.; Duan, Q.; Luo, Y.; Xie, Z.; Liu, C.; Mo, X.-G. Climate change and water resources: Case study of Eastern Monsoon Region of China. Adv. Clim. Chang. Res. 2017, 8, 63–67. [Google Scholar] [CrossRef]
- Ruan, H.; Feng, P.; Wang, B.; Xing, H.; O’Leary, G.J.; Huang, Z.; Guo, H.; Liu, D.L. Future climate change projects positive impacts on sugarcane productivity in southern China. Eur. J. Agron. 2018, 96, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Jin, H.; Zhang, Y.; He, R.X.; Luo, D.; Wang, Y.; Lü, L.; Zhang, Q. Thermal impacts of boreal forest vegetation on active layer and permafrost soils in northern da Xing’Anling (Hinggan) Mountains, Northeast China. Arctic, Antarct. Alp. Res. 2015, 47, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, F.; Zhu, Y.; Fu, G.; Lü, H.; Zhang, A.; Yu, Z.; Chen, X. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stoch. Environ. Res. Risk Assess. 2015, 29, 1781–1795. [Google Scholar] [CrossRef]
- Tan, M.L.; Ficklin, D.L.; Ibrahim, A.L.; Yusop, Z. Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. J. Water Clim. Chang. 2014, 5, 676–695. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [Google Scholar] [CrossRef]
Period | Mid-Year | Needleleaf Forest (Larch-Dominated) | Broadleaf Deciduous Forest (Birch-Dominated) | Total | ||
---|---|---|---|---|---|---|
Biomass (t/ha) | Area Ratio | Biomass (t/ha) | Area Ratio | (t/ha) | ||
1 | 1978 | 45.6 | 100% | 0.0 | 0% | 45.6 |
2 | 1990 | 28.7 | 70% | 8.9 | 30% | 37.6 |
3 | 2001 | 19.0 | 60% | 13.9 | 40% | 33.0 |
4 | 2012 | 18.3 | 50% | 17.9 | 50% | 36.2 |
Evaluation Index | Monthly | Annual | ||
---|---|---|---|---|
Calibration Period | Validation Period | Calibration Period | Validation Period | |
R2 | 0.76 | 0.79 | 0.82 | 0.93 |
NSE | 0.75 | 0.75 | 0.79 | 0.85 |
PBIAS | 16.0% | 21.8% | −6.0% | 9.2% |
Forest Change | Comparison Period | Runoff Depth (mm) | (mm) | SWAT Model | ||
---|---|---|---|---|---|---|
Observed | Simulated | (mm) | (mm) | |||
Deforestation | Period 1 | 216 | 216 | +53 | +17 | +36 |
Period 2 | 269 | 234 | ||||
Reforestation | Period 3 | 242 | 213 | +17 | +46 | −29 |
Period 4 | 259 | 260 | ||||
Species composition shift | Period 2 | 269 | 234 | −10 | +26 | −36 |
Period 4 | 259 | 260 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Man, X.; Duan, L.; Cai, T. Assessments of Impacts of Climate and Forest Change on Water Resources Using SWAT Model in a Subboreal Watershed in Northern Da Hinggan Mountains. Water 2020, 12, 1565. https://doi.org/10.3390/w12061565
Yu Z, Man X, Duan L, Cai T. Assessments of Impacts of Climate and Forest Change on Water Resources Using SWAT Model in a Subboreal Watershed in Northern Da Hinggan Mountains. Water. 2020; 12(6):1565. https://doi.org/10.3390/w12061565
Chicago/Turabian StyleYu, Zhengxiang, Xiuling Man, Liangliang Duan, and Tijiu Cai. 2020. "Assessments of Impacts of Climate and Forest Change on Water Resources Using SWAT Model in a Subboreal Watershed in Northern Da Hinggan Mountains" Water 12, no. 6: 1565. https://doi.org/10.3390/w12061565