Effects of Ca2+ Concentration on Anaerobic Ammonium Oxidation Reactor Microbial Community Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Artificial Wastewater
2.3. Analytical Methods
2.3.1. Wastewater Samples
2.3.2. Microbial Analysis
2.3.3. Data Analysis
3. Results
3.1. Effect of Ca2+ Concentration on Nitrogen Removal
3.2. DGGE
3.3. Microbial Community Structure Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulder, A.A.; van de Graaf, L.A.; Robertson, J.G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 1995, 16, 177–183. [Google Scholar] [CrossRef]
- Donald, S.; Beverley, C. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds. Ecosystems 2009, 12, 158–178. [Google Scholar]
- Magalhaes, C.; Kiene, R.; Buchan, A. A novel inhibitory interaction between dimethylsulfoniopropionate (DMSP) and the denitrification pathway. Biogeochemistry 2012, 17, 393–408. [Google Scholar] [CrossRef]
- Chaali, M.; Naghdi, M. A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. J. Chem. Technol. Biotechnol. 2018, 93, 3113–3124. [Google Scholar] [CrossRef]
- Yu, J.; Chen, H.; Ji, Y.; Zhang, J.; Ma, C.; Jin, R. Mechanisms of ultrasound irradiation for enhancing the ANAMMOX process. Sep. Purif. Technol. 2014, 130, 141–146. [Google Scholar] [CrossRef]
- Kuenen, J.G. Anammox bacteria: From discovery to application. Nat. Rev. Microbiol. 2008, 6, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Strous, M.; Fuerst, J.A.; Kramer, E.H.M.; Logemann, S.; Muyzer, G.; van de Pas-Schoonen, K.T.; Webb, R.; Kuenen, J.G.; Jetten, M.S.M. Missing lithotroph identified as new planctomycete. Nature 1999, 400, 446–449. [Google Scholar] [CrossRef]
- Kartal, B.; Kuenen, J.G.; van Loosdrecht, M.C.M. Sewage treatment with anammox. Science 2010, 328, 702–703. [Google Scholar] [CrossRef]
- Sobeck, D.; Higgins, M.J. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002, 36, 527–538. [Google Scholar] [CrossRef]
- Ali, M.; Oshiki, M.; Rathnayake, L.; Ishii, S.; Satoh, H.; Okabe, S. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Res. 2015, 79, 147–157. [Google Scholar] [CrossRef]
- Hyokwan, B.; Minkyu, C.; Changsoo, L. Enrichment of ANAMMOX bacteria from conventional activated sludge entrapped in poly(vinyl alcohol)/sodium alginate gel. Chem. Eng. J. 2015, 281, 531–540. [Google Scholar]
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; van Loosdrecht, M.C.M.; Buisman, C.J.N. Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability. Water Res. 2011, 45, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Tay, J.; Liu, Y.; Stephen, T.T. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol. Lett. 2003, 25, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Z.; Ni, J. Effects of Ca2+ on activity restoration of the damaged anammox consortium. Bioresour. Technol. 2013, 143, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, J.; Tabassum, S. Anaerobic ammonium oxidation (ANAMMOX) sludge immobilized by waterborne polyurethane and its nitrogen removal performance-a lab scale study. RSC Adv. 2015, 5, 25372–25381. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Wang, D.; Koga, Y.; Joseph, D.R.; Furukawa, K. Trace elements enhance biofilm formation in UASB reactor for solo simple molecule wastewater treatment. Bioresour. Technol. 2011, 102, 9296–9299. [Google Scholar] [CrossRef]
- Jung, J. Comparison of nitrogen removal efficiency on process stability for granular and immobilized anammox bacteria. J. Korean Soc. Water Wastewater 2014, 28, 195–206. [Google Scholar]
- Liu, R.; Wu, C.; Lu, X. The characteristics of immobilized granular sludge in the laboratory-scale stable partial nitrification-Anammox aquaculture water reactors. J. Water Reuse Desalin. 2016, 6, 445–453. [Google Scholar]
- Wang, W.; Wang, X.; Wang, S.; Li, J. Partial denitrification coupled with immobilization of anammox in a continuous upflow reactor. RSC Adv. 2018, 8, 32016–32021. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, Y.; Wang, D.; Chi, H.; Jin, Y. Treatment of high-strength rare-earth ammonia wastewater with a two-stage anaerobic ammonium oxidation (anammox) process. Glob. NEST J. 2016, 18, 867–874. [Google Scholar]
- Zhu, G.; Yan, J.; Hu, Y. Anaerobic ammonium oxidation in polyvinyl alcohol and sodium alginate immobilized biomass system: A potential tool to maintain anammox biomass in application. Water Sci. Technol. 2014, 69, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Kim, S.S.; Kim, S.C.; Joo, H.J. Effects of Ca2+ on biological nitrogen removal in reverse osmosis concentrate and adsorption treatment. J. Ind. Eng. Chem. 2018, 57, 216–225. [Google Scholar] [CrossRef]
- Jetten, M.S.M.; Cirpus, I.; Kartal, B. 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem. Soc. Trans. 2005, 33, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, D.; Zhang, W. Effects of substrates on N2O emissions in an anaerobic ammonium oxidation (anammox) reactor. SpringerPlus 2016, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Li, L. Fast start-up of expanded granular sludge bed (EGSB) reactor using stored Anammox sludge. Water Sci. Technol. 2014, 69, 1469–1474. [Google Scholar]
- Zhang, W.; Wang, H.; Joseph, D.R.; Jin, Y. Granular activated carbon as nucleus for formation of Anammox granules in an expanded granular-sludge-bed reactor. Glob. NEST J. 2015, 17, 508–514. [Google Scholar]
- Zhang, Z.; Liu, S.; Taro, M. Mitigated membrane fouling of anammox membrane bioreactor by microbiological immobilization. Bioresour. Technol. 2016, 201, 312–318. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, Y. Effects of Fe(II) on N2O emissions from anammox reactors. Desalin. Water Treat. 2017, 63, 221–226. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D.; Jin, Y. Effects of inorganic carbon on the nitrous oxide emissions and microbial diversity of an anaerobic ammonia oxidation reactor. Bioresour. Technol. 2018, 250, 124–130. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.; Zhang, W. Use of bamboo charcoal reduced the cultivated anammox seed sludge dosage during the start-up period. Desalin. Water Treat. 2015, 57, 20248–20253. [Google Scholar] [CrossRef]
- Wang, H.; Han, J.; Zhang, W. Effects of NH4+-N and NO2−-N on carbon fixation in an anaerobic ammonium oxidation reactor. J. Environ. Manag. 2019, 241, 450–457. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 19th ed.; APHA: Washington, DC, USA, 1995; p. 1467. [Google Scholar]
- Xing, B.; Guo, Q.; Yang, G.; Zhang, Z.; Li, P.; Guo, L.; Jin, R. The properties of anaerobic ammonium oxidation (anammox) granules: Roles of ambient temperature, salinity and calcium concentration. Sep. Purif. Technol. 2015, 147, 311–318. [Google Scholar] [CrossRef]
- Lipschultz, F.; Zafiriou, O.C.; Wofsy, S.C. Production of NO and N2O by soil nitrifying bacteria. Nature 1981, 294, 641–643. [Google Scholar] [CrossRef]
- Bhattacharjee, A.S.; Wu, S.; Lawson, C.E.; Jetten, M.S.; Kapoor, V.; Domingo, J.W.; McMahon, K.D.; Noguera, D.R.; Goel, R. Whole-Community Metagenomics in Two Different Anammox Configurations: Process Performance and Community Structure. Environ. Sci. Technol. 2017, 51, 4317–4327. [Google Scholar]
- Fahrbach, M.; Kuever, J.; Meinke, R. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteo bacterium. Int. J. Syst. Evol. Microbiol. 2006, 56, 1547–1552. [Google Scholar] [CrossRef] [PubMed]





| Component | Concentration |
|---|---|
| NH4HCO3 | 0.11 g/L |
| NaNO2 | 0.12 g/L |
| KH2PO4 | 0.03 g/L |
| MgSO4·7H2O | 0.1 g/L |
| CaCl2·2H2O | 0.09–0.46 * g/L |
| NaS2O3 | 0.04 * g/L |
| EDTA | 0.25 * mL/L |
| Na2S2O3 | 0.01 mL/L |
| Trace elements | 0.5 mL/L |
| Component | Concentration (mg/L) |
|---|---|
| FeSO4·7H2O | 10,000 |
| C10H14N2Na2O3 | 5600 |
| MnCl2·4H2O | 352 |
| CoCl2·6H2O | 96 |
| NiCl2·6H2O | 80 |
| CuSO4·5H2O | 100 |
| ZnSO4·7H2O | 172 |
| NaMoO4·2H2O | 110 |
| Calcium Ion Concentration (mg/L) | Diversity Index |
|---|---|
| Initial sludge | 2.327 |
| 25 | 2.443 |
| 50 | 2.231 |
| 75 | 2.345 |
| 80 | 2.131 |
| 100 | 2.350 |
| 125 | 2.367 |
| Band No. | Strains | Gene Band No. | Similarity | Phylum |
|---|---|---|---|---|
| 1 | Ignavibacterium sp. | JQ724348.1 | 98% | Chlorobi |
| 2 | Uncultured Acidobacteria bacterium clone 3F2 | KC442541.1 | 97% | Acidobacteria |
| 3 | Uncultured Chlorobi bacterium clone RUGL1-218 | GQ421108.1 | 99% | Chlorobi |
| 4 | Denitratisoma oestradiolicum clone 20b_15 | KF810114.1 | 99% | Proteobacteria |
| 5 | Uncultured Chloroflexi bacterium clone MA-R101 | JN038662.1 | 98% | Chloroflexi |
| 6 | Uncultured Chlorobi bacterium | CU918838.1 | 92% | Chlorobi |
| 7 | Uncultured planctomycete clone 5GA_Pla_HKP_08 | GQ356155.1 | 100% | Planctomycete |
| 8 | Uncultured Anaerolinea sp. | EF636836.1 | 94% | Chloroflexi |
| 9 | Uncultured Denitratisoma sp. clone as185 | KF287743.1 | 98% | Proteobacteria |
| 10 | Denitratisoma oestradiolicum clone 20b_2 | KF810120.1 | 99% | Proteobacteria |
| 11 | Uncultured beta proteobacterium clone B-AB39 | AY622250.1 | 99% | Proteobacteria |
| 12 | Uncultured sludge bacterium A21b clone MBR Ca 300ppm 19 | KT182572.1 | 99% | Proteobacteria |
| 13 | Uncultured gamma proteobacterium clone 428 | AB252885.1 | 98% | Proteobacteria |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Jin, Y.; Zhang, W. Effects of Ca2+ Concentration on Anaerobic Ammonium Oxidation Reactor Microbial Community Structure. Water 2019, 11, 1341. https://doi.org/10.3390/w11071341
Ma X, Jin Y, Zhang W. Effects of Ca2+ Concentration on Anaerobic Ammonium Oxidation Reactor Microbial Community Structure. Water. 2019; 11(7):1341. https://doi.org/10.3390/w11071341
Chicago/Turabian StyleMa, Xueyan, Yue Jin, and Wenjie Zhang. 2019. "Effects of Ca2+ Concentration on Anaerobic Ammonium Oxidation Reactor Microbial Community Structure" Water 11, no. 7: 1341. https://doi.org/10.3390/w11071341
APA StyleMa, X., Jin, Y., & Zhang, W. (2019). Effects of Ca2+ Concentration on Anaerobic Ammonium Oxidation Reactor Microbial Community Structure. Water, 11(7), 1341. https://doi.org/10.3390/w11071341

