Rooting Depth and Extreme Precipitation Regulate Groundwater Recharge in the Thick Unsaturated Zone: A Case Study
Abstract
:1. Introduction
2. Data and Methodology
2.1. Dynamic Root Distribution
2.2. Connected and Disconnected Groundwater Recharge
3. Results
3.1. Effects of Precipitation and Rooting Depth on the Spatial and Temporal Distributions of Soil Water Content
3.2. Characteristics of Connected and Disconnected Recharge as Affected by Precipitation and Rooting Depth
3.3. Response of Connected and Disconnected Recharge to Precipitation
4. Discussion
4.1. Rooting Depth Alters Long-Term Average Recharge
4.2. Interaction between Climate and Rooting Depth on Long-Term Average Recharge
4.3. Rooting Depth Effects on Recharge Mechanisms
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, E.D.; Caldwell, M.M.; Mooney, H.A.; Jackson, R.B.; Parson, D.; Scholes, R.; Sala, O.E.; Trimborn, P. Downward flux of water through roots (i.e., inverse hydraulic lift) in dry Kalahari sands. Oecologia 1998, 115, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, D.; Wang, Y.; Wei, X.; Ma, L. Soil water and root distribution under jujube plantations in the semiarid Loess Plateau region, China. Plant Growth Regul. 2015, 77, 21–31. [Google Scholar] [CrossRef]
- Yang, Y.; Donohue, R.J.; McVicar, T.R. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resour. Manag. 2016, 52, 8260–8276. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Si, B.C.; Li, M. Rooting depth controls potential groundwater recharge on hillslopes. J. Hydrol. 2018, 564, 164–174. [Google Scholar] [CrossRef]
- Schulze, E.D.; Mooney, H.A.; Sala, O.E.; Jobbagy, E.; Buchmann, N.; Bauer, G.; Canadell, J.; Jackson, R.B.; Loreti, J.; Oesterheld, M.; et al. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 1996, 108, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Guswa, A.J. The influence of climate on root depth: A carbon cost-benefit analysis. Water Resour. Res. 2008, 44, 1–11. [Google Scholar] [CrossRef]
- Freycon, V.; Christelle, W.; Fayolle, A.; Laclau, J.; Lucot, E.; Jourdan, C.; Cornu, G.; Gourlet-Fleury, S. Tree roots can penetrate deeply in African semi-deciduous rain forests: Evidence from two common soil types. J. Tropi. Ecol. 2015, 31, 13–23. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.; Zhang, C.; Liu, Z.; Zou, J.; Xiao, J. Soil organic carbon in deep profiles under Chinese continental monsoon climate and its relations with land uses. Ecol. Eng. 2015, 82, 361–367. [Google Scholar] [CrossRef]
- Pinheiro, R.C.; Costa, R.; de Deus, J.C., Jr.; Nouvellon, Y.; Campoe, O.C.; Stape, J.L.; Aló, L.L.; Guerrini, I.A.; Jourdan, C.; Laclau, J. A fast exploration of very deep soil layers by eucalyptus seedlings and clones in Brazil. For. Ecol. Manag. 2016, 366, 143–152. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the Loess Plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Bonan, G.B.; Drewniak, B.; Huang, M.; Koven, C.D.; Levis, S.; Li, F.; Riley, W.J.; Subin, Z.M.; Swenson, S.C.; Thornton, P.E. Technical Description of Version 4.5 of the COMMUNITY Land Model (CLM); NCAR Technical Note NCAR/TN-503+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2013; pp. 175–176. [Google Scholar]
- Oleson, K.W.; Lawrence, D.M.; Bonan, G.B.; Flanner, M.G.; Kluzek, E.; Lawrence, P.J.; Levis, S.; Swenson, S.C.; Thornton, P.E. Technical Description of Version 4.0 of the Community Land model (CLM); NCAR Technical Note NCAR/TN-478+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2010; pp. 141–142. [Google Scholar]
- Hörmann, G.; Branding, A.; Clemen, T.; Herbst, M.; Hinrichs, A.; Thamm, F. Calculation and simulation of wind controlled canopy interception of a beech forest in northern Germany. Agric. For. Meteorol. 1996, 79, 131–148. [Google Scholar] [CrossRef]
- Murakami, S. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol. 2006, 319, 72–82. [Google Scholar] [CrossRef]
- Loustau, D.; Berbigier, P.; Granier, A. Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash analytical model of interception. J. Hydrol. 1992, 138, 469–485. [Google Scholar] [CrossRef]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Si, B.; Feng, H. Deep rooted apple trees decrease groundwater recharge in the highland region of the Loess Plateau, China. Sci. Total Environ. 2018, 622–623, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Kim, J.H.; Jackson, R.B. A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J. 2012, 11, 1–35. [Google Scholar] [CrossRef]
- Shao, J.; Si, B.; Jin, J. Extreme precipitation years and their occurrence frequency regulate long-term groundwater recharge and transit time. Vadose Zone J. 2018, 17, 180093. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2012, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 2015, 349, 175–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, C.M. Digging deeper: Fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol. 2010, 186, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Schenk, H.J.; Jackson, R.B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef]
- Ding, Z.L.; Rutter, N.W.; Sun, J.M.; Yang, S.L.; Liu, T.S. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China: Evidence from grain size records of loess-palaeosol and red clay sequences. Quat. Sci. Rev. 2000, 19, 547–558. [Google Scholar] [CrossRef]
- Torrent, J.; Liu, Q.; Bloemendal, J.; Barrón, V. Magnetic enhancement and iron oxides in the upper Luochuan loess–paleosol sequence, Chinese Loess Plateau. Soil Sci. Soc. Am. J. 2007, 71, 1570–1578. [Google Scholar] [CrossRef]
- Messing, I.; Chen, L.; Hessel, R. Soil conditions in a small catchment on the Loess Plateau in China. Catena 2003, 54, 45–58. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, W.; Li, Z.; Han, X. Land use change affects groundwater recharge in the Changwu Loess Tableland of China. Adv. Water Sci. 2016, 27, 670–678. (In Chinese) [Google Scholar] [CrossRef]
- Huang, Y.; Chang, Q.; Li, Z. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Sci. Total Environ. 2018, 628–629, 443–452. [Google Scholar] [CrossRef]
- Zeng, X.B. Global vegetation root distribution for land modeling. J. Hydrometeorol. 2001, 2, 525–530. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Liu, W.; Si, B. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Sci. Total Environ. 2017, 586, 827–835. [Google Scholar] [CrossRef] [Green Version]
Type | 1901–1926 | 1927–1963 | 1964–2015 | 1901–2015 | ||||
---|---|---|---|---|---|---|---|---|
Connected | Total | Connected | Total | Connected | Total | Connected | Total | |
Winter wheat | 122 | 165 | 178 | 246 | 103 | 115 | 132 | 168 |
Summer maize | 103 | 135 | 168 | 234 | 86 | 89 | 116 | 146 |
Apple orchard | 23 | 23 | 165 | 238 | 54 | 54 | 83 | 106 |
Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitation | 1910 | 1915 | 1918 | 1923 | 1928 | 1936 | 1943 | 1951 | 1953 | 1980 | 1992 | 2002 |
Winter wheat | 1915 | 1923 | 1927 | 1934 | 1939 | 1944 | 1948 | 1956 | 1959 | 1989 | 2002 | 2015 |
Summer maize | 1915 | - | 1928 | 1934 | 1939 | 1944 | 1948 | 1956 | 1960 | 1993 | - | - |
Apple orchard | - | - | 1928 | 1934 | 1938 | 1944 | 1947 | 1956 | - | - | - | - |
Type | 1901–1918 | 1919–1955 | 1956–2015 | 1901–2015 |
---|---|---|---|---|
Winter wheat | 419 | 378 | 510 | 447 |
Summer maize | 440 | 395 | 537 | 469 |
Apple orchard | 476 | 398 | 604 | 509 |
Type | 1901–1926 | 1927–1963 | 1964–2015 | |||
---|---|---|---|---|---|---|
Disconnected | Total | Disconnected | Total | Disconnected | Total | |
Winter wheat | 6.5 | 134 | 8 | 91.2 | 10.7 | 185.6 |
Summer maize | 5 | 162.1 | 8.3 | 95.3 | 13 | 235.2 |
Apple orchard | - | 876.2 | 8.2 | 94 | - | 370 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Si, B.; Jin, J. Rooting Depth and Extreme Precipitation Regulate Groundwater Recharge in the Thick Unsaturated Zone: A Case Study. Water 2019, 11, 1232. https://doi.org/10.3390/w11061232
Shao J, Si B, Jin J. Rooting Depth and Extreme Precipitation Regulate Groundwater Recharge in the Thick Unsaturated Zone: A Case Study. Water. 2019; 11(6):1232. https://doi.org/10.3390/w11061232
Chicago/Turabian StyleShao, Jin, Bingcheng Si, and Jiming Jin. 2019. "Rooting Depth and Extreme Precipitation Regulate Groundwater Recharge in the Thick Unsaturated Zone: A Case Study" Water 11, no. 6: 1232. https://doi.org/10.3390/w11061232