Quantifying Impacts of Mean Annual Lake Bottom Temperature on Talik Development and Permafrost Degradation below Expanding Thermokarst Lakes on the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Study Area Details
3. Model Description
3.1. Lake Radius Expanding Model
3.2. Thermokarst Lake Expansion
3.3. Analysis Domain and Physical and Thermal Parameters
3.4. Boundary Conditions and Model Solution
4. Results and Analyses
4.1. Talik Development
4.2. Permafrost Degradation
5. Discussion
6. Summary and Conclusions
- (1)
- An increase of 0.75 °C in the MALBT can advance the formation time of a funnel-shaped open talik by more than 26 years in the Beiluhe Basin.
- (2)
- The minimum distance from the open talik boundary to the thermokarst lake centerline is very sensitive to the MALBT, while the MALBT plays a less important role in the open talik lateral thaw process.
- (3)
- Increases in the MALBT can speed up the permafrost degradation rate below the lake.
- (4)
- Selections of accurate MALBT and mean annual lake lateral expansion rate based on long-term field measurement data are prerequisites for numerical simulation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, W.G.; Johnston, G.H.; Brown, R.E. Comparison of observed and calculated ground temperatures with permafrost distribution under a northern lake. Can. Geotech. J. 1964, 1, 147–154. [Google Scholar] [CrossRef]
- Ling, F.; Zhang, T. Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J. Geophys. Res. Atmos. 2003, 108, 4511. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Frohn, R.; Nelson, F.E.; Eisner, W.R.; Beck, R.A. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic coastal plain, Alaska. Permafr. Periglac. Process. 2005, 16, 327–341. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. 2007, 112, F02S17. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Lantz, T.C.; Kanigan, J.; Smith, S.L.; Coutts, R. Origin and Polycyclic Behavior of Tundra Thaw Slumps, Mackenzie Delta Region, Northwest Territories, Canada. Permafr. Periglac. Process. 2009, 20, 173–184. [Google Scholar] [CrossRef]
- Roy-Leveillee, P.; Burn, C.R. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. J. Geophys. Res. Earth Surf. 2017, 122, F004022. [Google Scholar] [CrossRef]
- Wang, Y.B.; Sun, Z.; Sun, Y. Effects of a thaw slump on active layer in permafrost regions with the comparison of effects of thermokarst lakes on the Qinghai–Tibet Plateau, China. Geoderma 2018, 314, 47–57. [Google Scholar] [CrossRef]
- Oechel, W.C.; Hastings, S.J.; Vourlitis, G.L.; Jenkins, M.; Eiechers, G.; Grulke, N. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 1993, 361, 520–533. [Google Scholar] [CrossRef]
- Zimov, S.A.; Voropaev, Y.V.; Semiletov, I.P.; Davidov, S.P.; Prosiannikov, S.F.; Chapin, F.S., III; Chapin, M.C.; Trumbore, S.; Tyler, S. North Siberian lakes: A methane source fueled by Pleistocene carbon. Science 1997, 277, 800–802. [Google Scholar] [CrossRef]
- Phelps, A.R.; Peterson, K.; Jeffries, M.O. Methane efflux from high latitude lakes during spring ice-melt. J. Geophys. Res. 1998, 103, 29029–29036. [Google Scholar] [CrossRef]
- Walter, K.M.; Edwards, M.E.; Grosse, G.; Zimov, S.A.; Chapin, F.S. Thermokarst lakes as a source of atmospheric CH4 during the Last Deglaciation. Science 2007, 318, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Hinzman, L.D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Ling, F.; Zhang, T. Modeling study of talik freeze-up and permafrost response under drained thaw lakes on the Alaskan Arctic Coastal Plain. J. Geophys. Res. Atmos. 2004, 109, D01111. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M. Disappearing Arctic Lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, M.T.; Shur, Y.; Pullman, E.R. Abrupt increase in permafrost degration in Arctic Alaska. Geophys. Res. Lett. 2006, 33, L02503. [Google Scholar] [CrossRef]
- Walter, K.M.; Zimov, S.A.; Chanton, J.P.; Verbyla, D.; Chapin, F.S. Methane bubbling from Siberian thaw lakes as positive feedback to climate warming. Nature 2006, 443, 71–75. [Google Scholar] [CrossRef]
- Van Huissteden, J.; Berrittella, C.; Parmentier, F.W. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Chang. 2011, 1, 119–123. [Google Scholar] [CrossRef]
- Wang, H.N.; Liu, H.J.; Ni, W.K. Factors influencing thermokarst lake development in Beiluhe basin, the Qinghai-Tibet Plateau. Environ. Earth Sci. 2017, 76, 816–830. [Google Scholar] [CrossRef]
- Pelletier, J.D. Formation of oriented thaw lakes by thaw slumping. J. Geophys. Res. 2005, 110, F02018. [Google Scholar] [CrossRef]
- West, J.J.; Plug, L.J. Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J. Geophys. Res. 2008, 113, F01009. [Google Scholar] [CrossRef]
- Plug, L.J.; West, J.J. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J. Geophys. Res. Atmos. 2009, 114, F01002. [Google Scholar] [CrossRef]
- Kessler, M.A.; Plug, L.J.; Walter, K.M. Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J. Geophys. Res. 2012, 117, G00M06. [Google Scholar] [CrossRef]
- Matell, N.; Anderson, R.S.; Overeem, I.; Wobus, C.; Urban, F.E.; Clow, G.D. Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate. Comput. Geosci. 2013, 53, 69–79. [Google Scholar] [CrossRef]
- Li, S.; Zhan, H.; Lai, Y.; Sun, Z.; Pei, W. The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming. J. Geophys. Res. 2014, 119, 836–853. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, Z.; Yu, Q.; Wang, D.; Ma, W.; Niu, F.; Sun, Z.; Zhang, M. Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method. Cold Reg. Sci. Technol. 2016, 121, 84–92. [Google Scholar] [CrossRef]
- Ling, F.; Zhang, T. Progress in numerical simulation of long-term impact of thermokarst lakes on permafrost thermal regime. Adv. Earth Sci. 2018, 33, 51–66. [Google Scholar]
- Nawa, R.P.; Charles, W.D.; Sergei, M. Catchment Hydrological Modeling with Soil Thermal Dynamics during Seasonal Freeze-Thaw Cycles. Water 2019, 11, 116. [Google Scholar]
- Harris, S.A. Causes and consequences of rapid thermokarst development in permafrost on glacial terrain. Permafr. Periglac. Process. 2002, 13, 237–242. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, F.; Xu, Z.; Xu, J.; Wang, P. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafr. Periglac. Process. 2010, 21, 315–324. [Google Scholar] [CrossRef]
- Ling, F.; Wu, Q.; Zhang, T.; Niu, F. Modeling talik development and permafrost lateral thaw under a thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau. Permafr. Periglac. Process. 2012, 23, 312–321. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Guo, D.X.; Qiu, G.Q.; Cheng, G.D.; Li, S.J. Geocryology in China; Science Press: Beijing, China, 2000; pp. 13–14. [Google Scholar]
- Niu, F.J.; Lin, Z.J.; Liu, H.; Lu, J.H. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau. Geomorphology 2011, 132, 222–233. [Google Scholar] [CrossRef]
- Jin, H.J.; Li, S.X.; Cheng, G.D.; Wang, S.L.; Li, X. Permafrost and climatic change in China. Glob. Planet. Chang. 2000, 26, 387–404. [Google Scholar] [CrossRef]
- Cheng, G.D.; Wu, T.H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. 2007, 112, F02S03. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. 2008, 113, D13108. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T.; Liu, Y. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob. Planet. Chang. 2010, 72, 32–38. [Google Scholar] [CrossRef]
- Niu, F.J.; Zhang, J.M.; Zhang, Z. Engineering geological characteristics and evaluations of permafrost in Beiluhe testing field of the Qinghai-Tibet Railway. J. Glaciol. Geocryol. 2002, 24, 264–269. [Google Scholar]
- Sun, Z.; Liu, M.; Wu, G.; Yun, H. Characteristics of permafrost under a non-penetrative thermokarst lake in Beiluhe Basin on the Tibetan Plateau. J. Glaciol. Geocryol. 2012, 34, 37–42. [Google Scholar]
- Ling, F.; Wu, Q. Numerical simulation of influence of thermokarst lake horizontal expansion rate on talik development beneath thermokarst lakes on Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2017, 39, 328–335. [Google Scholar]
- Washburn, A.L. Geocryology: A Survey of Periglacial Processes and Environments; Halsted Press: New York, NY, USA, 1980; pp. 137–146. [Google Scholar]
- Williams, P.J.; Smith, M.W. The Frozen Earth: Fundamentals of Geocryology; Cambridge University Press: Cambridge, UK, 1989; pp. 36–75. [Google Scholar]
- Yang, Z.; Wen, Z.; Ma, W.; Sun, Z.; Yu, Q. Numerical simulation on the dynamic evolution process of thermokarst lakes based on the moving mesh technology. J. Glaciol. Geocryol. 2015, 37, 183–191. [Google Scholar]
- Ling, F.; Zhang, T. Simulating heat source effect of a thermokarst lake in the first 540 years on the Alaskan Arctic using a simple lake expanding model. Cold Reg. Sci. Technol. 2019, 160, 176–183. [Google Scholar] [CrossRef]
- Michaelson, G.J.; Ping, C.L.; Kimble, J.M. Carbon storage and distribution in tundra soils of Arctic Alaska, USA. Arct. Antarct. Alp. Res. 1996, 28, 414–424. [Google Scholar] [CrossRef]
- Qiu, J. Thawing permafrost reduces river runoff. Nature 2012, 6. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 2012, 464–465, 459–466. [Google Scholar] [CrossRef]
- Selroos, J.O.; Cheng, H.; Vidstrand, P.; Destouni, G. Permafrost Thaw with Thermokarst Wetland-Lake and Societal-Health Risks: Dependence on Local Soil Conditions under Large-ScaleWarming. Water 2019, 11, 574. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef]
- Lunardini, V.J. Climatic warming and the degradation of warm permafrost. Permafr. Periglac. Process. 1996, 7, 311–320. [Google Scholar] [CrossRef]
- Pan, X.C.; Yu, Q.H.; You, Y.H.; Chun, P.P.; Shi, X.G.; Li, Y.P. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau. J. Hydrol. 2017, 555, 621–630. [Google Scholar] [CrossRef]
- Freitas, P.; Vieira, G.; Canário, J.; Folhas, D.; Vincent, W.F. Identification of a Threshold Minimum Area for Reflectance Retrieval from Thermokarst Lakes and Ponds Using Full-Pixel Data from Sentinel-2. Remote Sens. 2019, 11, 657. [Google Scholar] [CrossRef]
- Burn, C.R. Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can. J. Earth Sci. 2002, 39, 1281–1298. [Google Scholar] [CrossRef]
- Burn, C.R. Lake-bottom thermal regimes, western Arctic coast, Canada. Permafr. Periglac. Process. 2005, 16, 355–367. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Niu, F.J.; Lin, Z.J.; Luo, J.; Yin, G.A.; Wang, Y.B. Evaluation of thermokarst lake water balance in the Qinghai-Tibet Plateau via isotope tracers. Sci. Total Environ. 2018, 636, 1–11. [Google Scholar] [CrossRef]
No. | Range (m) | Soil Type | Dry Bulk Density (kg m−3) | Water Content by Mass (kg kg−1) | Unfrozen Water Content by Mass (kg kg−1) | Frozen Thermal Conductivity (W m−1 °C) | Thaw Thermal Conductivity (W m−1 °C) | Frozen Volumetric Heat Capacity (J m−3 °C) | Thaw Volumetric Heat Capacity (J m−3 °C) |
---|---|---|---|---|---|---|---|---|---|
I | 0.0 ≤ z ≤ 2.3 R0 ≤ r ≤ 220.0 | Silty clay | 1400 | 0.35 | 0.04 | 2.28 | 1.18 | 2.371 × 106 | 3.220 × 106 |
II | 2.3 < z ≤ 5.3 0 ≤ r < 220 | Silt and clay | 1400 | 0.56 | 0.06 | 2.12 | 1.42 | 2.543 × 106 | 3.450 × 106 |
III | 5.3 < z ≤ 15.0 0 ≤ r ≤ 220.0 | Sand and gravel | 1600 | 0.27 | 0.03 | 1.92 | 1.35 | 2.459 × 106 | 3.178 × 106 |
IV | 15.0 < z ≤ 90.0 0 ≤ r ≤ 220.0 | Mudstone | 1600 | 0.17 | 0.02 | 1.57 | 1.28 | 1.872 × 106 | 2.457 × 106 |
Mean annual lake bottom temperature (°C) | 3.75 | 4.5 | 5.25 | 6.0 |
Open talik formation time (year) | 451 | 411 | 382 | 356 |
Permafrost mean downward thaw rate (cm/year−1) | 9.1 | 10.2 | 11.2 | 12.0 |
Mean Lake Bottom Temperature (°C) | The Minimum Distance at Different Years (m) | ||
---|---|---|---|
480 | 540 | 600 | |
3.75 | 31.9 | 58.7 | 81.3 |
4.50 | 50.8 | 72.9 | 92.5 |
5.25 | 62.2 | 83.6 | 102.4 |
6.00 | 71.1 | 90.1 | 109.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, F.; Pan, F. Quantifying Impacts of Mean Annual Lake Bottom Temperature on Talik Development and Permafrost Degradation below Expanding Thermokarst Lakes on the Qinghai–Tibet Plateau. Water 2019, 11, 706. https://doi.org/10.3390/w11040706
Ling F, Pan F. Quantifying Impacts of Mean Annual Lake Bottom Temperature on Talik Development and Permafrost Degradation below Expanding Thermokarst Lakes on the Qinghai–Tibet Plateau. Water. 2019; 11(4):706. https://doi.org/10.3390/w11040706
Chicago/Turabian StyleLing, Feng, and Feifei Pan. 2019. "Quantifying Impacts of Mean Annual Lake Bottom Temperature on Talik Development and Permafrost Degradation below Expanding Thermokarst Lakes on the Qinghai–Tibet Plateau" Water 11, no. 4: 706. https://doi.org/10.3390/w11040706