Next Article in Journal
Future Predictions of Rainfall and Temperature Using GCM and ANN for Arid Regions: A Case Study for the Qassim Region, Saudi Arabia
Previous Article in Journal
Estimation of Precipitation Evolution from Desert to Oasis Using Information Entropy Theory: A Case Study in Tarim Basin of Northwestern China
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Water 2018, 10(9), 1259; https://doi.org/10.3390/w10091259

Simulation of Runoff and Glacier Mass Balance and Sensitivity Analysis in a Glacierized Basin, North-Eastern Qinhai-Tibetan Plateau, China

1
Qilian Shan Station of Glaciology and Ecological Environment, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Received: 2 July 2018 / Revised: 27 August 2018 / Accepted: 12 September 2018 / Published: 15 September 2018
(This article belongs to the Section Hydrology)
Full-Text   |   PDF [6783 KB, uploaded 15 September 2018]   |  

Abstract

Glaciers have been recognized as the most sensitive indicators of climate change. Mountainous areas, with their characteristic snow and glacier cover, have long been recognized as special hydrological environments, receiving above-average amounts of precipitation. The streams originating in the mountains, nourished with distinct seasonal variations, provide water for the populations of the adjacent lowland. Little is known about the effect of climate change on snow and glacier hydrology and glacier mass balance in the Laohugou Glacier Basin (LHGB) over the past 50 years. A study of the glacier basin was performed to quantify the expected impact of climate change on the hydrology in the north-eastern Qinghai-Tibet Plateau. The DEM (Digital Elevation Model) data, daily temperature, daily precipitation, and evaporation data were applied to force the HBV (Hydrologiska Byrans Vattenbalansavdelning)-light conceptual model to simulate runoff depth and glacier mass balance in the historical period (1959–2015). A genetic calibration algorithm approach (GAP method) was used to obtain parameter sets that reproduced observed runoff depth well. The results suggested a drastic increase of the runoff depth from 1995 to 2015 in the Laohugou glacier basin driven by increased temperature. Temperature and precipitation increased by 0.40 °C (10a)−1 and 1.6 mm·a−1 (p < 0.01), respectively, at AWS1 (the automatic weather station at 4192 m a.s.l. near the hydrological station) in the LHGB from 1959 to 2015. The simulated runoff depth increased at 5.7 mm·a−1 (p < 0.01), the glacier mass balance (GMB) of the LHGB was −280.5 mm·a−1, and the overall glacier mass balance was −17.55 m w.e. from 1959 to 2015. The runoff is found to be more sensitive to the variation of temperature than the variation of precipitation. When the glacier area is decreased by 10%, 53%, and 100%, the peak runoff (July) decreased by 20.4%, 54.2%, and 72.3% relative to the baseline, respectively. In the future climate, the function of glaciers in compensating a potential low flow and regulating peak flow will be weakened in the critical months. View Full-Text
Keywords: climate change; glacier; hydrology model; Laohugou glacier river basin; Tibetan Plateau climate change; glacier; hydrology model; Laohugou glacier river basin; Tibetan Plateau
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Zhang, X.; Qin, X.; Xu, C.; Liu, Y. Simulation of Runoff and Glacier Mass Balance and Sensitivity Analysis in a Glacierized Basin, North-Eastern Qinhai-Tibetan Plateau, China. Water 2018, 10, 1259.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top