Genetics of Hearing Impairment in North-Eastern Romania—A Cost-Effective Improved Diagnosis and Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Compliance
2.2. Patient Recruitment
2.3. Audiologic Assessment
2.4. Research Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Deafness and Hearing Loss. Available online: https://www.who.int/health-topics/hearing-loss (accessed on 1 September 2020).
- Berg, A.L.; Spitzer, J.B.; Towers, H.M.; Bartosiewicz, C.; Diamond, B.E. Newborn hearing screening in the NICU: Profile of failed auditory brainstem response/passed otoacoustic emission. Pediatrics 2005, 116, 933–938. [Google Scholar] [CrossRef] [PubMed]
- D’Aguillo, C.; Bressler, S.; Yan, D.; Mittal, R.; Fifer, R.; Blanton, S.H.; Liu, X. Genetic screening as an adjunct to universal newborn hearing screening: Literature review and implications for non-congenital pre-lingual hearing loss. Int. J. Audiol. 2019, 58, 834–850. [Google Scholar] [CrossRef] [PubMed]
- Gorlin, R.J.; Gorlin, R.J.; Toriello, H.V.; Cohen, M.M. Hereditary Hearing Loss and Its Syndromes; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Van Camp, G.S.R. Hereditary Hearing Loss Homepage. Available online: https://hereditaryhearingloss.org (accessed on 31 August 2020).
- Putcha, G.V.; Bejjani, B.A.; Bleoo, S.; Booker, J.K.; Carey, J.C.; Carson, N.; Das, S.; Dempsey, M.A.; Gastier-Foster, J.M.; Greinwald, J.H., Jr.; et al. A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genet. Med. 2007, 9, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Koohiyan, M. Genetics of Hereditary Hearing Loss in the Middle East: A Systematic Review of the Carrier Frequency of the GJB2 Mutation (35delG). Audiol. Neurootol. 2019, 24, 161–165. [Google Scholar] [CrossRef]
- Mikstiene, V.; Jakaitiene, A.; Byckova, J.; Gradauskiene, E.; Preiksaitiene, E.; Burnyte, B.; Tumiene, B.; Matuleviciene, A.; Ambrozaityte, L.; Uktveryte, I.; et al. The high frequency of GJB2 gene mutation c.313_326del14 suggests its possible origin in ancestors of Lithuanian population. BMC Genet. 2016, 17, 45. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, P.I.; Karltorp, E.; Carlsson-Hansen, E.; Ahlman, H.; Moller, C.; Vondobeln, U. GJB2 (Connexin 26) gene mutations among hearing-impaired persons in a Swedish cohort. Acta Otolaryngol. 2012, 132, 1301–1305. [Google Scholar] [CrossRef] [Green Version]
- Bouzaher, M.H.; Worden, C.P.; Jeyakumar, A. Systematic Review of Pathogenic GJB2 Variants in the Latino Population. Otol. Neurotol. 2020, 41, e182–e191. [Google Scholar] [CrossRef]
- Koohiyan, M.; Koohian, F.; Azadegan-Dehkordi, F. GJB2-related hearing loss in central Iran: Review of the spectrum and frequency of gene mutations. Ann. Hum. Genet. 2020, 84, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Ildefonso, E.; Bademci, G.; Rajabli, F.; Cornejo-Olivas, M.; Villanueva, R.D.C.; Badillo-Carrillo, R.; Inca-Martinez, M.; Neyra, K.M.; Sineni, C.; Tekin, M. Identification of Main Genetic Causes Responsible for Non-Syndromic Hearing Loss in a Peruvian Population. Genes 2019, 10, 581. [Google Scholar] [CrossRef] [Green Version]
- Kucuk Kurtulgan, H.; Altuntas, E.E.; Yildirim, M.E.; Ozdemir, O.; Bagci, B.; Sezgin, I. The Analysis of GJB2, GJB3 and GJB6 Gene Mutations in Patients with Hereditary Non-Syndromic Hearing Loss Living in Sivas. J. Int. Adv. Otol. 2019, 15, 373–378. [Google Scholar] [CrossRef]
- Naddafnia, H.; Noormohammadi, Z.; Irani, S.; Salahshoorifar, I. Frequency of GJB2 mutations, GJB6-D13S1830 and GJB6-D13S1854 deletions among patients with non-syndromic hearing loss from the central region of Iran. Mol. Genet. Genomic Med. 2019, 7, e00780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Niu, L.; Tian, J.; Chen, W.; Li, Y.; Xia, N.; Jyu, C.; Chen, X.; Zhang, C.; Lan, X. Analysis of GJB2, SLC26A4, GJB3 and 12S rRNA gene mutations among patients with nonsyndromic hearing loss from eastern Shandong. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2019, 36, 433–438. [Google Scholar] [CrossRef] [PubMed]
- RamShankar, M.; Girirajan, S.; Dagan, O.; Ravi Shankar, H.M.; Jalvi, R.; Rangasayee, R.; Avraham, K.B.; Anand, A. Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J. Med. Genet. 2003, 40, e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azadan, R.J.; Fogleman, J.C.; Danielson, P.B. Capillary electrophoresis sequencing: Maximum read length at minimal cost. Biotechniques 2002, 32, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Rodelsperger, C.; Schuelke, M.; Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 2 September 2020).
- Schmuziger, N.; Veraguth, D.; Probst, R. Universal newborn hearing screening—A silent revolution. Praxis 2008, 97, 1015–1021. [Google Scholar] [CrossRef]
- Shearer, A.E.; Hildebrand, M.S.; Smith, R.J.H. Hereditary Hearing Loss and Deafness Overview GeneReviews ((R)). Available online: https://www.ncbi.nlm.nih.gov/pubmed/20301607 (accessed on 2 September 2020).
- Kenneson, A.; Van Naarden Braun, K.; Boyle, C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: A HuGE review. Genet. Med. 2002, 4, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Z.; Xia, X.J.; Ke, X.M.; Ouyang, X.M.; Du, L.L.; Liu, Y.H.; Angeli, S.; Telischi, F.F.; Nance, W.E.; Balkany, T.; et al. The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum. Genet. 2002, 111, 394–397. [Google Scholar] [CrossRef]
- Ghasemnejad, T.; Shekari Khaniani, M.; Zarei, F.; Farbodnia, M.; Mansoori Derakhshan, S. An update of common autosomal recessive non-syndromic hearing loss genes in Iranian population. Int. J. Pediatr. Otorhinolaryngol. 2017, 97, 113–126. [Google Scholar] [CrossRef]
- Loeza-Becerra, F.; Rivera-Vega Mdel, R.; Martinez-Saucedo, M.; Gonzalez-Huerta, L.M.; Urueta-Cuellar, H.; Berrruecos-Villalobos, P.; Cuevas-Covarrubias, S. Particular distribution of the GJB2/GJB6 gene mutations in Mexican population with hearing impairment. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Van Laer, L.; Coucke, P.; Mueller, R.F.; Caethoven, G.; Flothmann, K.; Prasad, S.D.; Chamberlin, G.P.; Houseman, M.; Taylor, G.R.; Van de Heyning, C.M.; et al. A common founder for the 35delG GJB2 gene mutation in connexin 26 hearing impairment. J. Med. Genet. 2001, 38, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, P.; Rabionet, R.; Barbujani, G.; Melchionda, S.; Petersen, M.; Brondum-Nielsen, K.; Metspalu, A.; Oitmaa, E.; Pisano, M.; Fortina, P.; et al. High carrier frequency of the 35delG deafness mutation in European populations. Genetic Analysis Consortium of GJB2 35delG. Eur. J. Hum. Genet. 2000, 8, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, J.; Moteki, H.; Nishio, S.Y.; Noguchi, Y.; Usami, S.I. Haplotype Analysis of GJB2 Mutations: Founder Effect or Mutational Hot Spot? Genes 2020, 11, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtsuka, A.; Yuge, I.; Kimura, S.; Namba, A.; Abe, S.; Van Laer, L.; Van Camp, G.; Usami, S. GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Hum. Genet. 2003, 112, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Katz, D.R.; Eng, C.M.; Kornreich, R.; Desnick, R.J. Nonradioactive detection of the common Connexin 26 167delT and 35delG mutations and frequencies among Ashkenazi Jews. Mol. Genet. Metab. 2001, 73, 160–163. [Google Scholar] [CrossRef]
- Safka Brozkova, D.; Varga, L.; Uhrova Meszarosova, A.; Slobodova, Z.; Skopkova, M.; Soltysova, A.; Ficek, A.; Jencik, J.; Lastuvkova, J.; Gasperikova, D.; et al. Variant c.2158-2A>G in MANBA is an important and frequent cause of hereditary hearing loss and β-mannosidosis among the Czech and Slovak Roma population- evidence for a new ethnic-specific variant. Orphanet. J. Rare Dis. 2020, 15, 222. [Google Scholar] [CrossRef]
- Kecskemeti, N.; Szonyi, M.; Gaborjan, A.; Kustel, M.; Milley, G.M.; Suveges, A.; Illes, A.; Kekesi, A.; Tamas, L.; Molnar, M.J.; et al. Analysis of GJB2 mutations and the clinical manifestation in a large Hungarian cohort. Eur. Arch. Otorhinolaryngol. 2018, 275, 2441–2448. [Google Scholar] [CrossRef]
- Bonyadi, M.J.; Fotouhi, N.; Esmaeili, M. Spectrum and frequency of GJB2 mutations causing deafness in the northwest of Iran. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 637–640. [Google Scholar] [CrossRef]
- Bliznets, E.A.; Marcul, D.N.; Khorov, O.G.; Markova, T.G.; Poliakov, A.V. The mutation spectrum of the GJB2 gene in Belarussian patients with hearing loss. Results of pilot genetic screening of hearing impairment in newborns. Genetika 2014, 50, 214–221. [Google Scholar] [PubMed]
- Teek, R.; Kruustuk, K.; Zordania, R.; Joost, K.; Reimand, T.; Mols, T.; Oitmaa, E.; Kahre, T.; Tonisson, N.; Ounap, K. Prevalence of c.35delG and p.M34T mutations in the GJB2 gene in Estonia. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhong, M.; Chen, J.; Yan, Y.L.; Lin, X.F.; Li, X. Effect of GJB2 235delC and 30-35delG genetic polymorphisms on risk of congenital deafness in a Chinese population. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef] [PubMed]
- Barashkov, N.A.; Pshennikova, V.G.; Posukh, O.L.; Teryutin, F.M.; Solovyev, A.V.; Klarov, L.A.; Romanov, G.P.; Gotovtsev, N.N.; Kozhevnikov, A.A.; Kirillina, E.V.; et al. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic). PLoS ONE 2016, 11, e0156300. [Google Scholar] [CrossRef]
- Tekin, M.; Arici, Z.S. Genetic epidemiological studies of congenital/prelingual deafness in Turkey: Population structure and mating type are major determinants of mutation identification. Am. J. Med. Genet. A 2007, 143, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Felix, F.; Zallis, M.G.; Tomita, S.; Baptista, M.M.; Ribeiro, M.G. Evaluation of the presence of the 35delG mutation in patients with severe to profound hearing loss based on ethnicity. Rev. Laryngol. Otol. Rhinol. 2014, 135, 171–174. [Google Scholar]
- Mahdieh, N.; Rabbani, B.; Wiley, S.; Akbari, M.T.; Zeinali, S. Genetic causes of nonsyndromic hearing loss in Iran in comparison with other populations. J. Hum. Genet. 2010, 55, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Toth, T.; Kupka, S.; Haack, B.; Riemann, K.; Braun, S.; Fazakas, F.; Zenner, H.P.; Muszbek, L.; Blin, N.; Pfister, M.; et al. GJB2 mutations in patients with non-syndromic hearing loss from Northeastern Hungary. Hum. Mutat. 2004, 23, 631–632. [Google Scholar] [CrossRef]
- Ramsebner, R.; Volker, R.; Lucas, T.; Hamader, G.; Weipoltshammer, K.; Baumgartner, W.D.; Wachtler, F.J.; Kirschhofer, K.; Frei, K. High incidence of GJB2 mutations during screening of newborns for hearing loss in Austria. Ear. Hear. 2007, 28, 298–301. [Google Scholar] [CrossRef]
- Oldak, M.; Lechowicz, U.; Pollak, A.; Ozieblo, D.; Skarzynski, H. Overinterpretation of high throughput sequencing data in medical genetics: First evidence against TMPRSS3/GJB2 digenic inheritance of hearing loss. J. Transl. Med. 2019, 17, 269. [Google Scholar] [CrossRef]
- Lazar, C.; Popp, R.; Trifa, A.; Mocanu, C.; Mihut, G.; Al-Khzouz, C.; Tomescu, E.; Figan, I.; Grigorescu-Sido, P. Prevalence of the c.35delG and p.W24X mutations in the GJB2 gene in patients with nonsyndromic hearing loss from North-West Romania. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 351–355. [Google Scholar] [CrossRef]
- Sansovic, I.; Knezevic, J.; Musani, V.; Seeman, P.; Barisic, I.; Pavelic, J. GJB2 mutations in patients with nonsyndromic hearing loss from Croatia. Genet. Test Mol. Biomark. 2009, 13, 693–699. [Google Scholar] [CrossRef]
- Leclere, J.C.; Le Gac, M.S.; Le Marechal, C.; Ferec, C.; Marianowski, R. GJB2 mutations: Genotypic and phenotypic correlation in a cohort of 690 hearing-impaired patients, toward a new mutation? Int. J. Pediatr. Otorhinolaryngol. 2017, 102, 80–85. [Google Scholar] [CrossRef]
- Doria, M.; Neto, A.P.; Santos, A.C.; Barros, H.; Fernandes, S.; Moura, C.P. Prevalence of 35delG and Met34Thr GJB2 variants in Portuguese samples. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 2187–2190. [Google Scholar] [CrossRef] [PubMed]
- Tlili, A.; Al Mutery, A.; Kamal Eddine Ahmad Mohamed, W.; Mahfood, M.; Hadj Kacem, H. Prevalence of GJB2 Mutations in Affected Individuals from United Arab Emirates with Autosomal Recessive Nonsyndromic Hearing Loss. Genet. Test Mol. Biomark. 2017, 21, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Zoll, B.; Petersen, L.; Lange, K.; Gabriel, P.; Kiese-Himmel, C.; Rausch, P.; Berger, J.; Pasche, B.; Meins, M.; Gross, M.; et al. Evaluation of Cx26/GJB2 in German hearing impaired persons: Mutation spectrum and detection of disequilibrium between M34T (c.101T>C) and -493del10. Hum. Mutat. 2003, 21, 98. [Google Scholar] [CrossRef]
- Hall, A.; Pembrey, M.; Lutman, M.; Steer, C.; Bitner-Glindzicz, M. Prevalence and audiological features in carriers of GJB2 mutations, c.35delG and c.101T>C (p.M34T), in a UK population study. BMJ Open 2012, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lench, N.J.; Markham, A.F.; Mueller, R.F.; Kelsell, D.P.; Smith, R.J.; Willems, P.J.; Schatteman, I.; Capon, H.; Van De Heyning, P.J.; Van Camp, G. A Moroccan family with autosomal recessive sensorineural hearing loss caused by a mutation in the gap junction protein gene connexin 26 (GJB2). J. Med. Genet. 1998, 35, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Green, G.E.; Scott, D.A.; McDonald, J.M.; Woodworth, G.G.; Sheffield, V.C.; Smith, R.J. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 1999, 281, 2211–2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, T.; Ikeda, K.; Oshima, T.; Kure, S.; Tammasaeng, M.; Prasansuk, S.; Matsubara, Y. GJB2 (connexin 26) mutations and childhood deafness in Thailand. Otol. Neurotol. 2001, 22, 858–861. [Google Scholar] [CrossRef]
- Rickard, S.; Kelsell, D.P.; Sirimana, T.; Rajput, K.; MacArdle, B.; Bitner-Glindzicz, M. Recurrent mutations in the deafness gene GJB2 (connexin 26) in British Asian families. J. Med. Genet. 2001, 38, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Dahl, H.H.; Tobin, S.E.; Poulakis, Z.; Rickards, F.W.; Xu, X.; Gillam, L.; Williams, J.; Saunders, K.; Cone-Wesson, B.; Wake, M. The contribution of GJB2 mutations to slight or mild hearing loss in Australian elementary school children. J. Med. Genet. 2006, 43, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Bazazzadegan, N.; Nikzat, N.; Fattahi, Z.; Nishimura, C.; Meyer, N.; Sahraian, S.; Jamali, P.; Babanejad, M.; Kashef, A.; Yazdan, H.; et al. The spectrum of GJB2 mutations in the Iranian population with non-syndromic hearing loss—A twelve year study. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 1164–1174. [Google Scholar] [CrossRef]
- Mahdieh, N.; Mahmoudi, H.; Ahmadzadeh, S.; Bakhtiyari, S. GJB2 mutations in deaf population of Ilam (Western Iran): A different pattern of mutation distribution. Eur. Arch. Otorhinolaryngol. 2016, 273, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Pandey, H.; Srivastava, P.; Mandal, K.; Phadke, S.R. Connexin 26 (GJB2) Mutations Associated with Non-Syndromic Hearing Loss (NSHL). Indian J. Pediatr. 2018, 85, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Minarik, G.; Ferak, V.; Ferakova, E.; Ficek, A.; Polakova, H.; Kadasi, L. High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen. Physiol. Biophys. 2003, 22, 549–556. [Google Scholar] [PubMed]
- Bouwer, S.; Angelicheva, D.; Chandler, D.; Seeman, P.; Tournev, I.; Kalaydjieva, L. Carrier rates of the ancestral Indian W24X mutation in GJB2 in the general Gypsy population and individual subisolates. Genet. Test. 2007, 11, 455–458. [Google Scholar] [CrossRef]
- Denoyelle, F.; Marlin, S.; Weil, D.; Moatti, L.; Chauvin, P.; Garabedian, E.N.; Petit, C. Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect: Implications for genetic counselling. Lancet 1999, 353, 1298–1303. [Google Scholar] [CrossRef]
- Del Castillo, F.J.; Rodriguez-Ballesteros, M.; Alvarez, A.; Hutchin, T.; Leonardi, E.; de Oliveira, C.A.; Azaiez, H.; Brownstein, Z.; Avenarius, M.R.; Marlin, S.; et al. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J. Med. Genet. 2005, 42, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Shahin, H.; Walsh, T.; Sobe, T.; Lynch, E.; King, M.C.; Avraham, K.B.; Kanaan, M. Genetics of congenital deafness in the Palestinian population: Multiple connexin 26 alleles with shared origins in the Middle East. Hum. Genet. 2002, 110, 284–289. [Google Scholar] [CrossRef]
- Cryns, K.; Orzan, E.; Murgia, A.; Huygen, P.L.; Moreno, F.; del Castillo, I.; Chamberlin, G.P.; Azaiez, H.; Prasad, S.; Cucci, R.A.; et al. A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J. Med. Genet. 2004, 41, 147–154. [Google Scholar] [CrossRef]
- Da Silva-Costa, S.M.; Coeli, F.B.; Lincoln-de-Carvalho, C.R.; Marques-de-Faria, A.P.; Kurc, M.; Pereira, T.; Pomilio, M.C.; Sartorato, E.L. Screening for the GJB2 c.-3170 G>A (IVS 1+1 G>A) mutation in Brazilian deaf individuals using multiplex ligation-dependent probe amplification. Genet. Test. Mol. Biomark. 2009, 13, 701–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homig-Holzel, C.; Savola, S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn. Mol. Pathol. 2012, 21, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Veldhuisen, B.; van der Schoot, C.E.; de Haas, M. Multiplex ligation-dependent probe amplification (MLPA) assay for blood group genotyping, copy number quantification and analysis of RH variants. Immunohematology 2015, 31, 58–61. [Google Scholar] [PubMed]
Variants | Protein Change | Clinical Significance | Patients (n) | |
---|---|---|---|---|
MLPA | c.35delG, rs80338939 | p.Gly12Valfs | Pathogenic | 97 |
c.101T>C, rs35887622 | p.Met34Thr | Pathogenic | 19 | |
c.313_326del14, rs111033253 | p.Lys105Glyfs | Pathogenic | 12 | |
c.-23+1G>A, rs80338940 | p.Trp3Ter | Pathogenic | 6 | |
Del WFS 1-8 | Pathogenic | 4 | ||
Del ex1 GJB2 | Pathogenic | 3 | ||
SANGER SEQUENCING | c.71G>A, rs104894396 | p.Trp24Ter | Pathogenic | 15 |
c.551G>C, rs80338950 | p.Arg184Pro | Pathogenic | 4 | |
c.109G>A, rs72474224 | p.Val37Ile | Pathogenic | 3 | |
c.269T>C, rs8033894 | p.Leu90Pro | Pathogenic | 3 | |
c.100A>T, rs564084861 | p.Met34Leu | Uncertain significance | 3 | |
c.457G>A, rs111033186 | p.Val153Ile | Likely benign | 5 | |
c.380G>A, rs111033196 | p.Arg127His | Benign | 10 | |
c.39G>A | p.(=) | Benign | 4 | |
c.341C>G | p.Glu114Gly | Benign | 4 | |
c.79G>A, rs2274084 | p.Val27Ile | Benign | 6 |
Genotypes | No of Subjects | Mild (21–40 dB) | Moderate (41–70 dB) | Severe (71–90 dB) | Profound (>90 dB) | |
---|---|---|---|---|---|---|
c.35delG Homozygous | c.35delG/c.35delG | 57 | 2 | 7 | 20 | 28 |
c.35delG Heterozygous | c.35delG/wt | 26 | 4 | 11 | 7 | 4 |
c.35delG Compound Heterozygous | c.35delG/c.101T>C | 10 | - | 6 | 2 | 2 |
c.35delG/c.313_326del14 | 6 | - | 1 | 2 | 3 | |
c.35delG/c.-23+1G>A | 4 | - | - | 1 | 3 | |
c.35delG/c.71G>A | 8 | - | 1 | 3 | 4 | |
c.35delG/c.551G>C | 2 | - | - | - | 2 | |
Non-35delG Compound Heterozygous | c.79G>A/c.380G>A | 1 | - | 1 | - | - |
c.79G>A/c.341C>G/C.380G>A | 4 | 1 | 3 | - | - | |
c.79G>A/c.39G>A | 4 | 2 | 2 | - | - | |
Non-35delG Heterozygous | c.101T>C/wt | 9 | 5 | 2 | 1 | 1 |
c.71G>A/wt | 7 | - | 5 | 1 | 1 | |
c.457G>A/wt | 5 | 1 | 2 | 2 | - | |
c.313_326del14/wt | 2 | - | 1 | 1 | - | |
c.269T>C | 3 | - | - | 2 | 1 | |
c.109G>A/wt | 3 | - | - | 2 | 1 | |
c.551G>C/wt | 2 | - | 1 | 1 | - | |
c.380G>A/wt | 2 | 2 | - | - | - | |
c.100A>T | 3 | 2 | 1 | - | - | |
Total | 158 | 19 | 44 | 45 | 50 |
Method | Advantages | Disadvantages |
---|---|---|
MLPA | Low costs | Sensitive to impurities |
Time efficient | Not suitable for unknown point mutations | |
Free analysis software | ||
High throughput | ||
Can detect changes in the copy number, DNA methylation and known point mutation | ||
Adaptable and updated | ||
Sanger Sequencing | Suitable for unknown point mutations | High costs |
Comprehensive coverage to any desired region | Time consuming | |
Limited number of targets | ||
Sequence quality degrades after 700 to 900 bases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resmerita, I.; Cozma, R.S.; Popescu, R.; Radulescu, L.M.; Panzaru, M.C.; Butnariu, L.I.; Caba, L.; Ilie, O.-D.; Gavril, E.-C.; Gorduza, E.V.; et al. Genetics of Hearing Impairment in North-Eastern Romania—A Cost-Effective Improved Diagnosis and Literature Review. Genes 2020, 11, 1506. https://doi.org/10.3390/genes11121506
Resmerita I, Cozma RS, Popescu R, Radulescu LM, Panzaru MC, Butnariu LI, Caba L, Ilie O-D, Gavril E-C, Gorduza EV, et al. Genetics of Hearing Impairment in North-Eastern Romania—A Cost-Effective Improved Diagnosis and Literature Review. Genes. 2020; 11(12):1506. https://doi.org/10.3390/genes11121506
Chicago/Turabian StyleResmerita, Irina, Romica Sebastian Cozma, Roxana Popescu, Luminita Mihaela Radulescu, Monica Cristina Panzaru, Lacramioara Ionela Butnariu, Lavinia Caba, Ovidiu-Dumitru Ilie, Eva-Cristiana Gavril, Eusebiu Vlad Gorduza, and et al. 2020. "Genetics of Hearing Impairment in North-Eastern Romania—A Cost-Effective Improved Diagnosis and Literature Review" Genes 11, no. 12: 1506. https://doi.org/10.3390/genes11121506
APA StyleResmerita, I., Cozma, R. S., Popescu, R., Radulescu, L. M., Panzaru, M. C., Butnariu, L. I., Caba, L., Ilie, O.-D., Gavril, E.-C., Gorduza, E. V., & Rusu, C. (2020). Genetics of Hearing Impairment in North-Eastern Romania—A Cost-Effective Improved Diagnosis and Literature Review. Genes, 11(12), 1506. https://doi.org/10.3390/genes11121506