Association of Long Non-Coding RNA Polymorphisms with Gastric Cancer and Atrophic Gastritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Selection of Long Non-Coding RNA SNPs
2.3. Genomic DNA Extraction and Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Przeglaprzegla̜ D. Gastroenterol. 2019, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Singhal, U.; Chinnaiyan, A.M. Long Noncoding RNAs in Cancer: From Function to Translation. Trends Cancer 2015, 1, 93–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra Gupta, S.; Nandan Tripathi, Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int. J. Cancer 2017, 140, 1955–1967. [Google Scholar] [CrossRef]
- Tam, C.; Wong, J.H.; Tsui, S.K.W.; Zuo, T.; Chan, T.F.; Ng, T.B. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: Updates in recent years. Appl. Microbiol. Biotechnol. 2019, 103, 4649–4677. [Google Scholar] [CrossRef]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, biology and functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef]
- Xie, C.; Yuan, J.; Li, H.; Li, M.; Zhao, G.; Bu, D.; Zhu, W.; Wu, W.; Chen, R.; Zhao, Y. NONCODEv4: Exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014, 42. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Shi, Z.M.; Chang, Y.N.; Hu, Z.M.; Qi, H.X.; Hong, W. The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene 2014, 547, 9. [Google Scholar] [CrossRef]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Kupcinskas, J.; Wex, T.; Link, A.; Bartuseviciute, R.; Dedelaite, M.; Kevalaite, G.; Leja, M.; Skieceviciene, J.; Kiudelis, G.; Jonaitis, L.; et al. PSCA and MUC1 gene polymorphisms are linked with gastric cancer and pre-malignant gastric conditions. Anticancer Res. 2014, 34, 7167–7175. [Google Scholar] [PubMed]
- Petkevicius, V.; Salteniene, V.; Juzenas, S.; Wex, T.; Link, A.; Leja, M.; Steponaitiene, R.; Skieceviciene, J.; Kupcinskas, L.; Jonaitis, L.; et al. Polymorphisms of microRNA target genes IL12B, INSR, CCND1 and IL10 in gastric cancer. World J. Gastroenterol. 2017, 23, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Dargiene, G.; Streleckiene, G.; Skieceviciene, J.; Leja, M.; Link, A.; Wex, T.; Kupcinskas, L.; Malfertheiner, P.; Kupcinskas, J. TLR1 and PRKAA1 gene polymorphisms in the development of atrophic gastritis and gastric cancer. J. Gastrointest. Liver Dis. 2018, 27, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Du, X. Noncoding RNAs in gastric cancer: Research progress and prospects. World J. Gastroenterol. 2016, 22, 6610–6618. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Gao, W.; Lv, X.; Wang, Y.; Wu, Q.; Yang, Z.; Mao, G.; Xing, W. Association between lncRNA GAS5, MEG3, and PCAT-1 Polymorphisms and Cancer Risk: A Meta-Analysis. Dis. Markers 2020, 2020, 6723487. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Qi, P.; Xu, M.-D.; Ni, S.-J.; Huang, D.; Xu, Q.-H.; Weng, W.-W.; Tan, C.; Sheng, W.-Q.; Zhou, X.-Y.; et al. Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls. Int. J. Cancer 2015, 137, 1128–1135. [Google Scholar] [CrossRef]
- Sánchez, Y.; Huarte, M. Long non-coding RNAs: Challenges for diagnosis and therapies. Nucleic Acid Ther. 2013, 23, 15–20. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.W.; Ren, J.Y.; Guo, M.; Guo, C.W.; Ning, S.W.; Yu, S. Long noncoding RNAs in gastric cancer: From molecular dissection to clinical application. World J. Gastroenterol. 2020, 26, 3401–3412. [Google Scholar] [CrossRef]
- Sabarinathan, R.; Tafer, H.; Seemann, S.E.; Hofacker, I.L.; Stadler, P.F.; Gorodkin, J. RNAsnp: Efficient detection of local RNA secondary structure changes induced by SNPs. Hum. Mutat. 2013, 34, 546–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GTExPortal. Trasnscript Expression. Available online: https://gtexportal.org/home (accessed on 26 October 2020).
- Regulome, D.B. Available online: http://www.regulomedb.org (accessed on 26 October 2020).
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aalijahan, H.; Ghorbian, S. Long non-coding RNAs and cervical cancer. Exp. Mol. Pathol. 2019, 106, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Lu, Y.L.; Yang, Y.; Hu, L.B.; Bai, Y.; Li, R.Q.; Zhang, G.Y.; Li, J.; Bi, C.W.; Yang, L.B.; et al. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF- β 1/Smad signaling pathway. Cancer Biomark. 2018, 21, 613–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Sun, H.; Liang, H.; Wang, Y.; Lu, M.; Guo, Z.; Lv, Z.; Ren, W. Evaluation of lncRNA ANRIL potential in hepatic cancer progression. J. Environ. Pathol. Toxicol. Oncol. 2019, 38, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Kangarlouei, R.; Irani, S.; Noormohammadi, Z.; Memari, F.; Mirfakhraie, R. ANRIL and ANRASSF1 long noncoding RNAs are upregulated in gastric cancer. J. Cell. Biochem. 2019, 120, 12544–12548. [Google Scholar] [CrossRef]
- Zhang, E.; Kong, R.; Yin, D.; You, L.; Sun, M.; Han, L.; Xu, T.; Xia, R.; Yang, J.; De, W.; et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 2014, 5, 2276–2292. [Google Scholar] [CrossRef] [Green Version]
- Rakhshan, A.; Zarrinpour, N.; Moradi, A.; Ahadi, M.; Omrani, M.D.; Ghafouri-Fard, S.; Taheri, M. Genetic variants within ANRIL (antisense non coding RNA in the INK4 locus) are associated with risk of psoriasis. Int. Immunopharmacol. 2020, 78, 106053. [Google Scholar] [CrossRef]
- Khorshidi, H.R.; Taheri, M.; Noroozi, R.; Sarrafzadeh, S.; Sayad, A.; Ghafouri-Fard, S. ANRIL genetic variants in Iranian breast cancer patients. Cell J. 2017, 19, 72–78. [Google Scholar] [CrossRef]
- Poi, M.J.; Li, J.; Sborov, D.W.; VanGundy, Z.; Cho, Y.K.; Lamprecht, M.; Pichiorri, F.; Phelps, M.A.; Hofmeister, C.C. Polymorphism in ANRIL is associated with relapse in patients with multiple myeloma after autologous stem cell transplant. Mol. Carcinog. 2017, 56, 1722–1732. [Google Scholar] [CrossRef]
- Dadaev, T.; Saunders, E.J.; Newcombe, P.J.; Anokian, E.; Leongamornlert, D.A.; Brook, M.N.; Cieza-Borrella, C.; Mijuskovic, M.; Wakerell, S.; Olama, A.A.; et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Gutschner, T.; Hämmerle, M.; Eißmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Groß, M.; et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013, 73, 1180–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Su, L.; Chen, X.; Li, P.; Cai, Q.; Yu, B.; Liu, B.; Wu, W.; Zhu, Z. MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed. Pharmacother. 2014, 68, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Luo, C.; Guo, Q.; Cao, J.; Yang, Q.; Dong, K.; Wang, S.; Wang, K.; Song, C. Association analyses of genetic variants in long non-coding RNA MALAT1 with breast cancer susceptibility and mRNA expression of MALAT1 in Chinese Han population. Gene 2018, 642, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Fattahi Dolatabadi, N.; Dehghani, A.; Shahand, E.; Yazdanshenas, M.; Tabatabaeian, H.; Zamani, A.; Azadeh, M.; Ghaedi, K. The interaction between MALAT1 target, miR-143-3p, and RALGAPA2 is affected by functional SNP rs3827693 in breast cancer. Hum. Cell 2020, 33, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bao, C.; Gu, S.; Ye, D.; Jing, F.; Fan, C.; Jin, M.; Chen, K. Associations between novel genetic variants in the promoter region of MALAT1 and risk of colorectal cancer. Oncotarget 2017, 8, 92604–92614. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Sun, H.; Wang, Y.; Yang, X.; Meng, Q.; Yang, H.; Zhu, H.; Tang, W.; Li, X.; Aschner, M.; et al. MALAT1 rs664589 polymorphism inhibits binding to miR-194-5p, contributing to colorectal cancer risk, growth, and metastasis. Cancer Res. 2019, 79, 5432–5441. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.G.; Xu, Q.; Lv, Z.; Fang, X.X.; Ding, H.X.; Wen, J.; Yuan, Y. Association of twelve polymorphisms in three onco-lncRNa genes with hepatocellular cancer risk and prognosis: A case-control study. World J. Gastroenterol. 2018, 24, 2482–2490. [Google Scholar] [CrossRef]
- Eftekharian, M.M.; Noroozi, R.; Komaki, A.; Mazdeh, M.; Ghafouri-Fard, S.; Taheri, M. MALAT1 Genomic variants and risk of multiple sclerosis. Immunol. Investig. 2019, 48, 549–554. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Zhang, Y.; Xu, X.; Bi, L.; Zhang, M.; Yu, B.; Zhang, Y. Association of lncRNA polymorphisms with triglyceride and total cholesterol levels among myocardial infarction patients in Chinese population. Gene 2020, 724, 143684. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.-C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhao, Z.-Y.; Wu, R.; Zhang, Y.; Zhang, Z.-Y. Prognostic value of long noncoding RNAs in gastric cancer: A meta-analysis. Onco Targets 2018, 11, 4877–4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.K.; Lee, J.H.; Park, C.H.; Yu, D.; Lee, Y.C.; Cheong, J.H.; Noh, S.H.; Lee, S.K. Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma. Biochem. Biophys. Res. Commun. 2014, 451, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Da, M.; Ma, J.; Zhang, Y.; Yang, J.; Yao, J.; Huang, B.; Ma, H.; Ge, L. High expression level of long non-coding RNA HOTAIR is associated with poor overall survival in gastric cancer patients: Evidence from meta-analysis. JBUON 2017, 22, 911–918. [Google Scholar]
- Yan, R.; Cao, J.; Song, C.; Chen, Y.; Wu, Z.; Wang, K.; Dai, L. Polymorphisms in lncRNA HOTAIR and susceptibility to breast cancer in a Chinese population. Cancer Epidemiol. 2015, 39, 978–985. [Google Scholar] [CrossRef]
- Guo, L.; Lu, X.; Zheng, L.; Liu, X.; Hu, M. Association of long non-coding RNA HOTAIR polymorphisms with cervical cancer risk in a Chinese population. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Li, Y.; Zhang, H.; Gong, H.; Yuan, Y.; Li, W.; Liu, H.; Chen, J. HOTAIR lncRNA SNPs rs920778 and rs1899663 are associated with smoking, male gender, and squamous cell carcinoma in a Chinese lung cancer population. Acta Pharm. Sin. 2018, 39, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Liu, L.; Wei, J.; Ge, Y.; Zhang, J.; Chen, H.; Zhou, L.; Yuan, Q.; Zhou, C.; Yang, M. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Mol. Carcinog. 2016, 55, 90–96. [Google Scholar] [CrossRef]
- Du, M.; Wang, W.; Jin, H.; Wang, Q.; Ge, Y.; Lu, J.; Ma, G.; Chu, H.; Tong, N.; Zhu, H.; et al. The association analysis of lncRNA HOTAIR genetic variants and gastric cancer risk in a Chinese population. Oncotarget 2015, 6, 31255–31262. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yu, B.; Li, J.; Su, L.; Yan, M.; Zhu, Z.; Liu, B. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 2014, 5, 2318–2329. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, M.; Gao, W.; Xu, J.; Wang, P.; Shu, Y. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem. Biophys. Res. Commun. 2014, 448, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Lv, L.; Liao, S. Long non-coding RNA H19 regulates cell growth and metastasis via the miR-22-3p/Snail1 axis in gastric cancer. Int. J. Oncol. 2019, 54, 2157–2168. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.L.; Huang, Z.; Wang, Q.; Chen, H.H.; Ma, S.N.; Wu, R.; Cai, W.S. The association of polymorphisms in lncRNA-H19 with hepatocellular cancer risk and prognosis. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Niu, Y. Association between lncRNA H19 (rs217727, rs2735971 and rs3024270) polymorphisms and the risk of bladder cancer in Chinese population. Minerva Urol. E Nefrol. 2019, 71, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tang, R.; Ma, X.; Wang, Y.; Luo, D.; Xu, Z.; Zhu, Y.; Yang, L. Tag SNPs in long non-coding RNA H19 contribute to susceptibility to gastric cancer in the Chinese Han population. Oncotarget 2015, 6, 15311–15320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chr | Position (GRCh38) | SNP * | Alleles | Gene | MAF | RNAsnp ** | GTExPortal *** | RegulomeDB |
---|---|---|---|---|---|---|---|---|
9 | 22041999 | rs17694493 | C > G | ANRIL | 0.153 | 0.042 | - | 1b |
9 | 22119196 | rs1333045 | T > C | ANRIL | 0.442 | 0.621 | - | 3a |
9 | 22062135 | rs1011970 | C >T | ANRIL | 0.208 | 0.036 | - | 7 |
11 | 1995678 | rs217727 | G > A | H19 | 0.073 | 0.888 | - | 2b |
11 | 65504361 | rs3200401 | C > T | MALAT1 | 0.213 | 0.886 | 4.50 × 10−6 | 4 |
12 | 53963973 | rs17840857 | T > G | HOTAIR | 0.277 | 0.662 | - | 2b |
14 | 100835645 | rs1054000 | A > C | MEG3 | 0.196 | 0.788 | - | 2b |
Characteristic | Controls n = 476 | Atrophic Gastritis Patients n = 118 | Gastric Cancer Patients n = 613 | p-Value |
---|---|---|---|---|
Age (mean ± SD) | 63.2 ± 9.4 * | 67.9 ± 10.5 | 66.9 ± 11.1 | < 0.001 |
Gender (%) | < 0.001 | |||
Male | 30.5 | 35.6 | 64.3 ** | |
Female | 69.5 | 64.4 | 35.7 |
Genotype | Control | Atrophic Gastritis | Gastric Cancer | p-Value (Atrophic Gastritis and Control) | p-Value (Gastric Cancer and Control) | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
rs217727 (H19) | ||||||||
GG | 259 | 54.8 | 67 | 56.8 | 352 | 4.8 | ||
AG | 184 | 38.9 | 46 | 39 | 229 | 37.5 | 0.678 | 0.412 |
AA | 30 | 6.3 | 5 | 4.2 | 29 | 57.7 | ||
Allele G | 702 | 74.2 | 180 | 76.3 | 933 | 76.5 | 0.515 | 0.224 |
Allele A | 244 | 25.8 | 56 | 23.7 | 267 | 23.5 | ||
rs3200401 (MALAT1) | ||||||||
CC | 335 | 70.5 | 70 | 59.8 | 416 | 3.5 | ||
CT | 126 | 25.5 | 46 | 39.3 | 171 | 28.1 | 0.014 | 0.73 |
TT | 14 | 2.9 | 1 | 0.9 | 21 | 68.4 | ||
Allele C | 796 | 83.8 | 186 | 79.5 | 1003 | 82.5 | 0.117 | 0.421 |
Allele T | 154 | 16.2 | 48 | 20.5 | 213 | 17.5 | ||
rs17840857 (HOTAIR) | ||||||||
TT | 253 | 53.3 | 47 | 39.8 | 314 | 51.6 | ||
TG | 184 | 38.7 | 57 | 48.3 | 251 | 41.2 | 0.029 | 0.681 |
GG | 38 | 8 | 14 | 11.9 | 44 | 7.2 | ||
Allele T | 690 | 72.6 | 151 | 64 | 879 | 72.2 | 0.009 | 0.811 |
Allele G | 260 | 27.4 | 85 | 36 | 339 | 27.8 | ||
rs1054000 (MEG3) | ||||||||
AA | 348 | 73.4 | 87 | 74.4 | 429 | 71.5 | ||
AC | 116 | 24.5 | 27 | 23.1 | 162 | 27 | 0.916 | 0.511 |
CC | 10 | 2.1 | 3 | 2.6 | 9 | 1.5 | ||
Allele A | 812 | 85.7 | 201 | 85.9 | 1020 | 85 | 0.924 | 0.671 |
Allele C | 136 | 14.3 | 33 | 14.1 | 180 | 15 | ||
rs17694493 (ANRIL) | ||||||||
CC | 344 | 72.4 | 94 | 79.7 | 443 | 72.3 | ||
CG | 128 | 26.9 | 20 | 16.9 | 157 | 25.6 | 0.005 | 0.121 |
GG | 3 | 0.6 | 4 | 3.4 | 13 | 2.1 | ||
Allele C | 816 | 85.9 | 208 | 88.1 | 1043 | 85.1 | 0.37 | 0.59 |
Allele G | 134 | 14.1 | 28 | 11.9 | 183 | 14.9 | ||
rs1333045 (ANRIL) | ||||||||
TT | 127 | 26.7 | 31 | 26.7 | 161 | 23.5 | ||
CT | 244 | 51.4 | 46 | 39.7 | 297 | 49.6 | 0.019 | 0.785 |
CC | 104 | 21.9 | 39 | 33.6 | 141 | 26.9 | ||
Allele T | 498 | 52.4 | 108 | 46.6 | 619 | 51.7 | 0.109 | 0.729 |
Allele C | 452 | 47.6 | 124 | 53.4 | 579 | 48.3 | ||
rs1011970 (ANRIL) | ||||||||
CC | 353 | 74.3 | 91 | 77.1 | 463 | 76 | ||
CT | 111 | 23.4 | 24 | 20.3 | 139 | 22.8 | 0.779 | 0.313 |
TT | 11 | 2.3 | 3 | 2.5 | 18 | 1.1 | ||
Allele C | 817 | 86 | 206 | 87.3 | 1065 | 87.4 | 0.607 | 0.326 |
Allele T | 133 | 14 | 30 | 12.7 | 153 | 12.6 |
Genotype | Atrophic Gastritis | Gastric Cancer | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
rs217727 (H19) | ||||||
GG | 1 | 1 | ||||
AG | 0.96 | 0.63–1.48 | 0.867 | 0.89 | 0.67–1.17 | 0.388 |
AA | 0.67 | 0.25–1.82 | 0.433 | 0.6 | 0.33–1.09 | 0.094 |
AA vs. AG + GG | 0.68 | 0.26–1.82 | 0.444 | 0.63 | 0.36–1.13 | 0.123 |
AA + AG vs. GG | 1.08 | 0.72–1.64 | 0.709 | 0.84 | 0.65–1.10 | 0.211 |
A vs. G | 0.9 | 0.64–1.27 | 0.553 | 0.84 | 0.68–1.04 | 0.112 |
rs3200401 (MALAT1) | ||||||
CC | 1 | 1 | ||||
CT | 1.81 | 1.17–2.80 | 0.0066 | 1.11 | 0.82–1.50 | 0.495 |
TT | 0.35 | 0.04–2.75 | 0.316 | 1.17 | 0.56–2.45 | 0.682 |
TT vs. CC + CT | 0.29 | 0.04–2.24 | 0.234 | 1.13 | 0.54–2.37 | 0.738 |
TT + CT vs. CC | 1.66 | 1.08–2.56 | 0.02 | 1.12 | 0.84–1.49 | 0.454 |
T vs. C | 1.37 | 0.95–1.98 | 0.095 | 1.1 | 0.86–1.41 | 0.445 |
rs17840857 (HOTAIR) | ||||||
TT | 1 | 1 | ||||
TG | 1.61 | 1.04–2.50 | 0.034 | 1.22 | 0.92–1.60 | 0.169 |
GG | 1.97 | 0.98–3.99 | 0.058 | 0.98 | 0.59–1.62 | 0.938 |
GG vs. TT + TG | 1.57 | 0.81–3.05 | 0.186 | 0.9 | 0.55–1.47 | 0.676 |
GG + TG vs. TT | 1.67 | 1.10–2.54 | 0.016 | 1.17 | 0.90–1.53 | 0.236 |
G vs. T | 1.47 | 1.08–2.00 | 0.14 | 1.08 | 0.88–1.33 | 0.448 |
rs1054000 (MEG3) | ||||||
AA | 1 | 1 | ||||
AC | 0.94 | 0.58–1.54 | 0.81 | 1.12 | 0.83–1.52 | 0.451 |
CC | 1.19 | 0.30–4.61 | 0.807 | 0.65 | 0.23–1.80 | 0.404 |
CC vs. AA + AC | 1.2 | 0.31–4.66 | 0.79 | 0.63 | 0.23–1.74 | 0.37 |
CC + AC vs. AA | 0.96 | 0.60–1.54 | 0.868 | 1.09 | 0.81–1.46 | 0.583 |
C vs. A | 0.99 | 0.65–1.50 | 0.945 | 1.04 | 0.80–1.35 | 0.795 |
rs17694493 (ANRIL) | ||||||
CC | 1 | 1 | ||||
CG | 0.58 | 0.34–0.98 | 0.043 | 0.94 | 0.70–1.27 | 0.688 |
GG | 5.11 | 1.10–23.80 | 0.038 | 4.93 | 1.28–19.0 | 0.02 |
GG vs. CC + CG | 5.78 | 1.24–26.84 | 0.025 | 5.02 | 1.31–19.28 | 0.019 |
GG + CG vs. CC | 0.68 | 0.41–1.12 | 0.13 | 1.01 | 0.75–1.36 | 0.938 |
G vs. C | 0.83 | 0.54–1.30 | 0.417 | 1.09 | 0.84–1.43 | 0.508 |
rs1333045 (ANRIL) | ||||||
TT | 1 | 1 | ||||
CT | 0.77 | 0.46–1.28 | 0.313 | 0.96 | 0.70–1.32 | 0.816 |
CC | 1.59 | 0.92–2.76 | 0.099 | 1.06 | 0.73–1.54 | 0.771 |
CC vs. TT + CT | 1.88 | 1.19–2.95 | 0.0066 | 1.08 | 0.79–1.48 | 0.618 |
CC + CT vs. TT | 1.01 | 0.63–1.61 | 0.976 | 0.99 | 0.74–1.34 | 0.956 |
C vs. T | 1.28 | 0.96–1.72 | 0.095 | 1.03 | 0.85–1.24 | 0.793 |
rs1011970 (ANRIL) | ||||||
CC | 1 | 1 | ||||
CT | 0.8 | 0.48–1.32 | 0.38 | 1.02 | 0.75–1.40 | 0.889 |
TT | 1.19 | 0.32–4.43 | 0.799 | 0.66 | 0.23–1.88 | 0.434 |
TT vs. CC + CT | 1.25 | 0.34–4.64 | 0.741 | 0.65 | 0.23–1.87 | 0.427 |
TT + CT vs. CC | 0.83 | 0.51–1.35 | 0.446 | 0.99 | 0.73–1.35 | 0.963 |
T vs. C | 0.88 | 0.57–1.36 | 0.562 | 0.97 | 0.73–1.276 | 0.798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkevicius, V.; Streleckiene, G.; Balciute, K.; Link, A.; Leja, M.; Malfertheiner, P.; Skieceviciene, J.; Kupcinskas, J. Association of Long Non-Coding RNA Polymorphisms with Gastric Cancer and Atrophic Gastritis. Genes 2020, 11, 1505. https://doi.org/10.3390/genes11121505
Petkevicius V, Streleckiene G, Balciute K, Link A, Leja M, Malfertheiner P, Skieceviciene J, Kupcinskas J. Association of Long Non-Coding RNA Polymorphisms with Gastric Cancer and Atrophic Gastritis. Genes. 2020; 11(12):1505. https://doi.org/10.3390/genes11121505
Chicago/Turabian StylePetkevicius, Vytenis, Greta Streleckiene, Kotryna Balciute, Alexander Link, Marcis Leja, Peter Malfertheiner, Jurgita Skieceviciene, and Juozas Kupcinskas. 2020. "Association of Long Non-Coding RNA Polymorphisms with Gastric Cancer and Atrophic Gastritis" Genes 11, no. 12: 1505. https://doi.org/10.3390/genes11121505
APA StylePetkevicius, V., Streleckiene, G., Balciute, K., Link, A., Leja, M., Malfertheiner, P., Skieceviciene, J., & Kupcinskas, J. (2020). Association of Long Non-Coding RNA Polymorphisms with Gastric Cancer and Atrophic Gastritis. Genes, 11(12), 1505. https://doi.org/10.3390/genes11121505