ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials
Abstract
:1. Introduction
2. Mechanisms of Cell-Mediated Cytotoxicity
3. Analyzing Cell-Mediated Cytotoxicity
4. ELISPOT Assays
5. IFN-γ ELISPOT Assay
6. Granzyme B ELISPOT Assay
Cancer/number of patient tested | Antigen | Patient vaccination | Ex vivo stimulation/effector cells | Results of GrB ELISPOT | Ref |
---|---|---|---|---|---|
Breast cancer/3 | Bcl-xL | no | One round/PBMC | CTL responses against Bcl-xL173–182 in 2/3 patients, correlated with IFN-γ ELISPOT and 51Cr release assay | [51] |
Breast cancer /7 | no | no | Expansion of γδ T cells | Average release GrB by γδ T cells significantly higher in normal donors, as well as IFN-γ and 51Cr release | [52] |
Colon cancer/5 | CP1 (Cancer-placenta) | no | Two rounds in ex vivo stimulation/isolated CD8+T cells | CD8+ response in 3/5 tested patients; correlated with IFN-γ ELISPOT | [53] |
Head and neck squamous cell carcinoma/8 | TAA RHAMM and G250 | no | MLC of isolated CD8+ T cells and APC | Anti-RHAMM CD8+ T cells response against tumor cells in 4/5 patients and anti-G250 CD8+ cells in 3/4. No correlation with IFN-γ ELISPOT | [54] |
Hepatocellular carcinoma/5 | NY-ESO -1b | no | 2–3 rounds activation of isolated CD8+ T cells | Specific CD8+ T response in 2/5 patients; correlated with IFN-γ ELISPOT | [55] |
Malignant melanoma/16 | Gp100 | Gp100 peptide vaccine | No/PBMC | 7/16 specific response vs. 11/16 for tetramer and IFN-γ ELISPOT and 4/16 51Cr release. Correlation with vaccination course | [35]. |
Malignant melanoma/7 * | Gp100 | Gp100 peptide vaccine | PBMC pre selected for positive response with or without one round ex vivo activation | Correlation with IFN-γ ELISPOT, 51Cr release | [44] |
and CD107a/Annexin V flow cytometric assay | |||||
Chronic lymphocytic leukemia/5 | RHAMM derived epitope R3 | R3 peptide vaccination | No/PBMC | In response to vaccination 4/5 of tetramer-positive samples produced both GrB and IFN-γ | [56] |
Acute myeloid leukemia/3 | PRAME derived peptide | DC pulsed with peptide | MLC of isolated CD8+ T cells | 1/3 response to vaccination | [57] |
Pancreatic cancer/7 | MUC1 | DC pulsed with peptide | PBMC | 2/7 response to vaccination; correlated with IFN-γ ELISPOT | [58] |
Malignant melanoma/1 | T-helper epitope of MART-1 | T-helper epitope of MART-1 | Isolated CD4+ T from PBMC activated with peptide-pulsed DC | Response to vaccination | [47] |
Chronic myeloid leukemia/9 | RHAMM derived epitope R3 | Allogeneic cell transplantation | Isolated CD8+ T cells | Response to R3 in 67% (6/9) of the CML patients after allo-SCT and 24% (8/34) of healthy donors | [59] |
Healthy donors/34 |
7. Perforin ELISPOT Assay
Conclusions
Acknowledgements
References
- Altman, J.D.; Moss, P.A.; Goulder, P.J.; Barouch, D.H.; McHeyzer-Williams, M.G.; Bell, J.I.; McMichael, A.J.; Davis, M.M. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996, 274, 94–96. [Google Scholar] [CrossRef]
- Lee, P.P.; Yee, C.; Savage, P.A.; Fong, L.; Brockstedt, D.; Weber, J.S.; Johnson, D.; Swetter, S.; Thompson, J.; Greenberg, P.D.; et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 1999, 5, 677–685. [Google Scholar] [CrossRef]
- Monsurro, V.; Nagorsen, D.; Wang, E.; Provenzano, M.; Dudley, M.E.; Rosenberg, S.A.; Marincola, F.M. Functional heterogeneity of vaccine-induced CD8(+) T cells. J. Immunol. 2002, 168, 5933–5942. [Google Scholar]
- Scheibenbogen, C.; Lee, K.H.; Mayer, S.; Stevanovic, S.; Moebius, U.; Herr, W.; Rammensee, H.G.; Keilholz, U. A sensitive ELISPOT assay for detection of CD8+ T lymphocytes specific for hla class i-binding peptide epitopes derived from influenza proteins in the blood of healthy donors and melanoma patients. Clin. Cancer Res. 1997, 3, 221–226. [Google Scholar]
- Scheibenbogen, C.; Lee, K.H.; Stevanovic, S.; Witzens, M.; Willhauck, M.; Waldmann, V.; Naeher, H.; Rammensee, H.G.; Keilholz, U. Analysis of the T cell response to tumor and viral peptide antigens by an IFN-gamma- ELISPOT assay. Int. J. Cancer 1997, 71, 932–936. [Google Scholar] [CrossRef]
- Keilholz, U.; Weber, J.; Finke, J.H.; Gabrilovich, D.I.; Kast, W.M.; Disis, M.L.; Kirkwood, J.M.; Scheibenbogen, C.; Schlom, J.; Maino, V.C.; et al. Immunologic monitoring of cancer vaccine therapy: Results of a workshop sponsored by the society for biological therapy. J. Immunother. 2002, 25, 97–138. [Google Scholar] [CrossRef]
- Lieberman, J. The ABCs of granule-mediated cytotoxicity: New weapons in the arsenal. Nat. Rev. Immunol. 2003, 3, 361–370. [Google Scholar] [CrossRef]
- Kagi, D.; Ledermann, B.; Burki, K.; Hengartner, H.; Zinkernagel, R.M. CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur. J. Immunol. 1994, 24, 3068–3072. [Google Scholar] [CrossRef]
- Nagata, S.; Golstein, P. The Fas death factor. Science 1995, 267, 1449–1456. [Google Scholar]
- Smyth, M.J.; Kelly, J.M.; Sutton, V.R.; Davis, J.E.; Browne, K.A.; Sayers, T.J.; Trapani, J.A. Unlocking the secrets of cytotoxic granule proteins. J. Leukoc. Biol. 2001, 70, 18–29. [Google Scholar]
- Garcia-Sanz, J.A.; MacDonald, H.R.; Jenne, D.E.; Tschopp, J.; Nabholz, M. Cell specificity of granzyme gene expression. J. Immunol. 1990, 145, 3111–3118. [Google Scholar]
- Trapani, J.A. Granzymes, cytotoxic granules and cell death: The early work of Dr. Jurg Tschopp. Cell Death Differ. 2012, 19, 21–27. [Google Scholar] [CrossRef]
- Brown, D.M. Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell. Immunol. 2010, 262, 89–95. [Google Scholar] [CrossRef]
- Cullen, S.P.; Brunet, M.; Martin, S.J. Granzymes in cancer and immunity. Cell Death Differ. 2010, 17, 616–623. [Google Scholar] [CrossRef]
- Martin, S.J.; Green, D.R. Protease activation during apoptosis: Death by a thousand cuts? Cell 1995, 82, 349–352. [Google Scholar]
- Sutton, V.R.; Davis, J.E.; Cancilla, M.; Johnstone, R.W.; Ruefli, A.A.; Sedelies, K.; Browne, K.A.; Trapani, J.A. Initiation of apoptosis by granzyme b requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med. 2000, 192, 1403–1414. [Google Scholar] [CrossRef]
- Jin, Z.; El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther. 2005, 4, 139–163. [Google Scholar] [CrossRef]
- Pulaski, B.A.; Smyth, M.J.; Ostrand-Rosenberg, S. Interferon-gamma-dependent phagocytic cells are a critical component of innate immunity against metastatic mammary carcinoma. Cancer Res. 2002, 62, 4406–4412. [Google Scholar]
- Seki, N.; Brooks, A.D.; Carter, C.R.; Back, T.C.; Parsoneault, E.M.; Smyth, M.J.; Wiltrout, R.H.; Sayers, T.J. Tumor-specific ctl kill murine renal cancer cells using both perforin and fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J. Immunol. 2002, 168, 3484–3492. [Google Scholar]
- Brunner, K.T.; Mauel, J.; Cerottini, J.C.; Chapuis, B. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 1968, 14, 181–196. [Google Scholar]
- Zaritskaya, L.; Shurin, M.R.; Sayers, T.J.; Malyguine, A.M. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev. Vaccines 2010, 9, 601–616. [Google Scholar] [CrossRef]
- Lyerly, H.K. Quantitating cellular immune responses to cancer vaccines. Semin. Oncol. 2003, 30, 9–16. [Google Scholar] [CrossRef]
- Tesfa, L.; Volk, H.D.; Kern, F. A protocol for combining proliferation, tetramer staining and intracellular cytokine detection for the flow-cytometric analysis of antigen specific T-cells. J. Biol. Regul. Homeost. Agents 2003, 17, 366–370. [Google Scholar]
- Jung, T.; Schauer, U.; Heusser, C.; Neumann, C.; Rieger, C. Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods 1993, 159, 197–207. [Google Scholar] [CrossRef]
- Badovinac, V.P.; Harty, J.T. Detection and analysis of antigen-specific CD8+ T cells. Immunol. Res. 2001, 24, 325–332. [Google Scholar] [CrossRef]
- Appay, V.; Rowland-Jones, S.L. The assessment of antigen-specific CD8+ T cells through the combination of MHC class I tetramer and intracellular staining. J. Immunol. Methods 2002, 268, 9–19. [Google Scholar] [CrossRef]
- Mackensen, A.; Veelken, H.; Lahn, M.; Wittnebel, S.; Becker, D.; Kohler, G.; Kulmburg, P.; Brennscheidt, U.; Rosenthal, F.; Franke, B.; et al. Induction of tumor-specific cytotoxicT lymphocytes by immunization with autologous tumor cells and interleukin-2 gene transfected fibroblasts. J. Mol. Med. 1997, 75, 290–296. [Google Scholar] [CrossRef]
- Sedgwick, J.D.; Holt, P.G. A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J. Immunol. Methods 1983, 57, 301–309. [Google Scholar]
- Lehmann, P.V.; Zhang, W. Unique strengths of ELISPOT for T cell diagnostics. Methods Mol. Biol. 2012, 792, 3–23. [Google Scholar] [CrossRef]
- Derby, E.G.; Reddy, V.; Nelson, E.L.; Kopp, W.C.; Baseler, M.W.; Dawson, J.R.; Malyguine, A.M. Correlation of human CD56+ cell cytotoxicity and IFN-gamma production. Cytokine 2001, 13, 85–90. [Google Scholar]
- Scheibenbogen, C.; Romero, P.; Rivoltini, L.; Herr, W.; Schmittel, A.; Cerottini, J.C.; Woelfel, T.; Eggermont, A.M.; Keilholz, U. Quantitation of antigen-reactive T cells in peripheral blood by IFN-gamma- ELISPOT assay and chromium-release assay: A four-centre comparative trial. J. Immunol. Methods 2000, 244, 81–89. [Google Scholar] [CrossRef]
- Schmittel, A.; Keilholz, U.; Thiel, E.; Scheibenbogen, C. Quantification of tumor-specific T lymphocytes with the ELISPOT assay. J. Immunother. 2000, 23, 289–295. [Google Scholar] [CrossRef]
- Slota, M.; Lim, J.B.; Dang, Y.; Disis, M.L. ELISPOT for measuring human immune responses to vaccines. Expert Rev. Vaccines 2011, 10, 299–306. [Google Scholar] [CrossRef]
- Malyguine, A.; Strobl, S.L.; Shafer-Weaver, K.A.; Ulderich, T.; Troke, A.; Baseler, M.; Kwak, L.W.; Neelapu, S.S. A modified human ELISPOT assay to detect specific responses to primary tumor cell targets. J. Transl. Med. 2004, 2. [Google Scholar] [CrossRef] [Green Version]
- Shafer-Weaver, K.; Rosenberg, S.; Strobl, S.; Gregory Alvord, W.; Baseler, M.; Malyguine, A. Application of the Granzyme B ELISPOT assay for monitoring cancer vaccine trials. J. Immunother. 2006, 29, 328–335. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Yang, J.C.; Restifo, N.P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 2004, 10, 909–915. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Sherry, R.M.; Morton, K.E.; Scharfman, W.J.; Yang, J.C.; Topalian, S.L.; Royal, R.E.; Kammula, U.; Restifo, N.P.; Hughes, M.S.; et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 2005, 175, 6169–6176. [Google Scholar]
- Okada, H.; Kalinski, P.; Ueda, R.; Hoji, A.; Kohanbash, G.; Donegan, T.E.; Mintz, A.H.; Engh, J.A.; Bartlett, D.L.; Brown, C.K.; et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 2011, 29, 330–336. [Google Scholar]
- Rininsland, F.H.; Helms, T.; Asaad, R.J.; Boehm, B.O.; Tary-Lehmann, M. Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J. Immunol. Methods 2000, 240, 143–155. [Google Scholar] [CrossRef]
- Shafer-Weaver, K.; Sayers, T.; Strobl, S.; Derby, E.; Ulderich, T.; Baseler, M.; Malyguine, A. Granzyme B Elispot assay: An alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J. Transl. Med. 2003, 1. [Google Scholar] [CrossRef] [Green Version]
- Rininsland, F.; Helms, T.; Asaad, R.; Boehm, B.; Tary-Lehmann, M. Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J. Immunol. Methods 2000, 240, 143–155. [Google Scholar] [CrossRef]
- Shafer-Weaver, K.A.; Sayers, T.; Kuhns, D.B.; Strobl, S.L.; Burkett, M.W.; Baseler, M.; Malyguine, A. Evaluating the cytotoxicity of innate immune effector cells using the GrB ELISPOT assay. J. Transl. Med. 2004, 2. [Google Scholar] [CrossRef] [Green Version]
- Betts, M.R.; Brenchley, J.M.; Price, D.A.; de Rosa, S.C.; Douek, D.C.; Roederer, M.; Koup, R.A. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 2003, 281, 65–78. [Google Scholar] [CrossRef]
- Zaritskaya, L.; Shafer-Weaver, K.A.; Gregory, M.K.; Strobl, S.L.; Baseler, M.; Malyguine, A. Application of a flow cytometric cytotoxicity assay for monitoring cancer vaccine trials. J. Immunother. 2009, 32, 186–194. [Google Scholar] [CrossRef]
- Burkett, M.W.; Shafer-Weaver, K.A.; Strobl, S.; Baseler, M.; Malyguine, A. A novel flow cytometric assay for evaluating cell-mediated cytotoxicity. J. Immunother. 2005, 28, 396–402. [Google Scholar] [CrossRef]
- Akiyama, Y.; Maruyama, K.; Mochizuki, T.; Sasaki, K.; Takaue, Y.; Yamaguchi, K. Identification of HLA-A24-restricted ctl epitope encoded by the matrix protein pp65 of human cytomegalovirus. Immunol. Lett. 2002, 83, 21–30. [Google Scholar] [CrossRef]
- Wong, R.; Lau, R.; Chang, J.; Kuus-Reichel, T.; Brichard, V.; Bruck, C.; Weber, J. Immune responses to a class II helper peptide epitope in patients with stage III/IV resected melanoma. Clin. Cancer Res. 2004, 10, 5004–5013. [Google Scholar] [CrossRef]
- Ma, H.; Kapp, J.A. Peptide affinity for mhc influences the phenotype of CD8(+) T cells primed in vivo. Cell. Immunol. 2001, 214, 89–96. [Google Scholar] [CrossRef]
- Gallimore, A.; Glithero, A.; Godkin, A.; Tissot, A.C.; Pluckthun, A.; Elliott, T.; Hengartner, H.; Zinkernagel, R. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 1998, 187, 1383–1393. [Google Scholar] [CrossRef]
- Monsurro, V.; Wang, E.; Yamano, Y.; Migueles, S.A.; Panelli, M.C.; Smith, K.; Nagorsen, D.; Connors, M.; Jacobson, S.; Marincola, F.M. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood 2004, 104, 1970–1978. [Google Scholar] [CrossRef]
- Andersen, M.H.; Reker, S.; Kvistborg, P.; Becker, J.C.; thor Straten, P. Spontaneous immunity against Bcl-xl in cancer patients. J. Immunol. 2005, 175, 2709–2714. [Google Scholar]
- Gaafar, A.; Aljurf, M.D.; Al-Sulaiman, A.; Iqniebi, A.; Manogaran, P.S.; Mohamed, G.E.; Al-Sayed, A.; Alzahrani, H.; Alsharif, F.; Mohareb, F.; et al. Defective gamma/deltaT-cell function and granzyme b gene polymorphism in a cohort of newly diagnosed breast cancer patients. Exp. Hematol. 2009, 37, 838–848. [Google Scholar] [CrossRef]
- Liu, F.F.; Dong, X.Y.; Pang, X.W.; Xing, Q.; Wang, H.C.; Zhang, H.G.; Li, Y.; Yin, Y.H.; Fant, M.; Ye, Y.J.; et al. The specific immune response to tumor antigen Cp1 and its correlation with improved survival in colon cancer patients. Gastroenterology 2008, 134, 998–1006. [Google Scholar]
- Schmitt, A.; Barth, T.F.; Beyer, E.; Borchert, F.; Rojewski, M.; Chen, J.; Guillaume, P.; Gronau, S.; Greiner, J.; Moller, P.; et al. The tumor antigens RHAAM and G250/CAIX are expressed in head and neck squamous cell carcinomas and elicit specific CD8+ T cell responses. Int. J. Oncol. 2009, 34, 629–639. [Google Scholar]
- Shang, X.Y.; Chen, H.S.; Zhang, H.G.; Pang, X.W.; Qiao, H.; Peng, J.R.; Qin, L.L.; Fei, R.; Mei, M.H.; Leng, X.S.; et al. The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin. Cancer Res. 2004, 10, 6946–6955. [Google Scholar]
- Giannopoulos, K.; Dmoszynska, A.; Kowal, M.; Rolinski, J.; Gostick, E.; Price, D.A.; Greiner, J.; Rojewski, M.; Stilgenbauer, S.; Dohner, H.; et al. Peptide vaccination elicits leukemia-associated antigen-specific cytotoxic CD8+ T-cell responses in patients with chronic lymphocytic leukemia. Leukemia 2010, 24, 798–805. [Google Scholar]
- Li, L.; Giannopoulos, K.; Reinhardt, P.; Tabarkiewicz, J.; Schmitt, A.; Greiner, J.; Rolinski, J.; Hus, I.; Dmoszynska, A.; Wiesneth, M.; et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int. J. Oncol. 2006, 28, 855–861. [Google Scholar]
- Rong, Y.; Qin, X.; Jin, D.; Lou, W.; Wu, L.; Wang, D.; Wu, W.; Ni, X.; Mao, Z.; Kuang, T.; et al. A phase I pilot trial of MUC1-peptide-pulsed dendritic cells in the treatment of advanced pancreatic cancer. Clin. Exp. Med. 2011. [Google Scholar] [CrossRef]
- Chen, J.; Schmitt, A.; Bunjes, D.; Chen, B.; Schmitt, M. The receptor for hyaluronic acid-mediated motility induces specific CD8+ T cell response in healthy donors and patients with chronic myeloid leukemia after allogeneic stem cell transplantation. Int. J. Oncol. 2007, 30, 1119–1127. [Google Scholar]
- Zuber, B.; Levitsky, V.; Jonsson, G.; Paulie, S.; Samarina, A.; Grundstrom, S.; Metkar, S.; Norell, H.; Callender, G.G.; Froelich, C.; et al. Detection of human perforin by ELISPOT and ELISA: Ex vivo identification of virus-specific cells. J. Immunol. Methods 2005, 302, 13–25. [Google Scholar] [CrossRef]
- Andersen, M.H.; Soerensen, R.B.; Becker, J.C.; Thor Straten, P. Hla-a24 and survivin: Possibilities in therapeutic vaccination against cancer. J. Transl. Med. 2006, 4, 10–1186. [Google Scholar]
- Vetsika, E.K.; Konsolakis, G.; Aggouraki, D.; Kotsakis, A.; Papadimitraki, E.; Christou, S.; Menez-Jamet, J.; Kosmatopoulos, K.; Georgoulias, V.; Mavroudis, D. Immunological responses in cancer patients after vaccination with the therapeutic telomerase-specific vaccine vx-001. Cancer Immunol. Immunother. 2012, 61, 157–168. [Google Scholar] [CrossRef]
- Malyguine, A.M.; Strobl, S.L.; Shurin, M.R. Immunological monitoring of the tumor immunoenvironment for clinical trials. Cancer Immunol. Immunother. 2012, 61, 239–247. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Malyguine, A.M.; Strobl, S.; Dunham, K.; Shurin, M.R.; Sayers, T.J. ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials. Cells 2012, 1, 111-126. https://doi.org/10.3390/cells1020111
Malyguine AM, Strobl S, Dunham K, Shurin MR, Sayers TJ. ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials. Cells. 2012; 1(2):111-126. https://doi.org/10.3390/cells1020111
Chicago/Turabian StyleMalyguine, Anatoli M., Susan Strobl, Kimberly Dunham, Michael R. Shurin, and Thomas J. Sayers. 2012. "ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials" Cells 1, no. 2: 111-126. https://doi.org/10.3390/cells1020111
APA StyleMalyguine, A. M., Strobl, S., Dunham, K., Shurin, M. R., & Sayers, T. J. (2012). ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL) Activity in Cancer Vaccine Clinical Trials. Cells, 1(2), 111-126. https://doi.org/10.3390/cells1020111