Agronomy 2012, 2(2), 74-115; doi:10.3390/agronomy2020074
Review

Pea (Pisum sativum L.) in the Genomic Era

1,2,* email, 3email, 3email, 4email, 5email, 6email, 7email, 1email, 8email, 8email, 9email, 10email, 11email, 12email and 13email
Received: 13 December 2011; in revised form: 29 February 2012 / Accepted: 18 March 2012 / Published: 4 April 2012
(This article belongs to the Special Issue Impact of Genomics Technologies on Crop Breeding Strategies)
View Full-Text   |   Download PDF [2819 KB, uploaded 4 April 2012]
Abstract: Pea (Pisum sativum L.) was the original model organism used in Mendel’s discovery (1866) of the laws of inheritance, making it the foundation of modern plant genetics. However, subsequent progress in pea genomics has lagged behind many other plant species. Although the size and repetitive nature of the pea genome has so far restricted its sequencing, comprehensive genomic and post genomic resources already exist. These include BAC libraries, several types of molecular marker sets, both transcriptome and proteome datasets and mutant populations for reverse genetics. The availability of the full genome sequences of three legume species has offered significant opportunities for genome wide comparison revealing synteny and co-linearity to pea. A combination of a candidate gene and colinearity approach has successfully led to the identification of genes underlying agronomically important traits including virus resistances and plant architecture. Some of this knowledge has already been applied to marker assisted selection (MAS) programs, increasing precision and shortening the breeding cycle. Yet, complete translation of marker discovery to pea breeding is still to be achieved. Molecular analysis of pea collections has shown that although substantial variation is present within the cultivated genepool, wild material offers the possibility to incorporate novel traits that may have been inadvertently eliminated. Association mapping analysis of diverse pea germplasm promises to identify genetic variation related to desirable agronomic traits, which are historically difficult to breed for in a traditional manner. The availability of high throughput ‘omics’ methodologies offers great promise for the development of novel, highly accurate selective breeding tools for improved pea genotypes that are sustainable under current and future climates and farming systems.
Keywords: breeding; germplasm; genetic diversity; marker-assisted breeding; legumes; pea
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; McPhee, K.E.; Redden, R.J.; Rubiales, D.; Weller, J.L.; Warkentin, T.D. Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2012, 2, 74-115.

AMA Style

Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, McPhee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD. Pea (Pisum sativum L.) in the Genomic Era. Agronomy. 2012; 2(2):74-115.

Chicago/Turabian Style

Smýkal, Petr; Aubert, Gregoire; Burstin, Judith; Coyne, Clarice J.; Ellis, Noel T. H.; Flavell, Andrew J.; Ford, Rebecca; Hýbl, Miroslav; Macas, Jiří; Neumann, Pavel; McPhee, Kevin E.; Redden, Robert J.; Rubiales, Diego; Weller, Jim L.; Warkentin, Tom D. 2012. "Pea (Pisum sativum L.) in the Genomic Era." Agronomy 2, no. 2: 74-115.

Agronomy EISSN 2073-4395 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert