Next Article in Journal
The Multi-Template Molecularly Imprinted Polymer Based on SBA-15 for Selective Separation and Determination of Panax notoginseng Saponins Simultaneously in Biological Samples
Previous Article in Journal
Microporous Hyper-Crosslinked Polystyrenes and Nanocomposites with High Adsorption Properties: A Review
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Polymers 2017, 9(12), 652; https://doi.org/10.3390/polym9120652

Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment

School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
*
Author to whom correspondence should be addressed.
Received: 6 October 2017 / Revised: 23 November 2017 / Accepted: 26 November 2017 / Published: 28 November 2017
View Full-Text   |   Download PDF [13399 KB, uploaded 28 November 2017]   |  

Abstract

Basalt fiber-reinforced polymer (BFRP) composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH). The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM) and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet. View Full-Text
Keywords: BFRP sheets; epoxy resin matrix; chloride ions; wet–dry cycle; residual tensile properties BFRP sheets; epoxy resin matrix; chloride ions; wet–dry cycle; residual tensile properties
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Lu, Z.; Xie, J.; Zhang, H.; Li, J. Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment. Polymers 2017, 9, 652.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top