Crystals 2013, 3(1), 38-48; doi:10.3390/cryst3010038

Effects of Strain on Notched Zigzag Graphene Nanoribbons

Department of Physics, The University of York, Heslington, York, YO10 5DD, UK
* Author to whom correspondence should be addressed.
Received: 19 November 2012; in revised form: 28 December 2012 / Accepted: 9 January 2013 / Published: 23 January 2013
(This article belongs to the Special Issue Graphenes)
PDF Full-text Download PDF Full-Text [519 KB, uploaded 23 January 2013 11:40 CET]
Abstract: The combined effects of an asymmetric (square or V-shaped) notch and uniaxial strain are studied in a zigzag graphene nanoribbon (ZGNR) device using a generalized tight-binding model. The spin-polarization and conductance-gap properties, calculated within the Landauer–B¨uttiker formalism, were found to be tunable for uniaxial strain along the ribbon-length and ribbon-width for an ideal ZGNR and square (V-shaped) notched ZGNR systems. Uniaxial strain along the ribbon-width for strains 10% initiated significant notch-dependent reductions to the conduction-gap. For the V-shaped notch, such strains also induced spin-dependent changes that result, at 20% strain, in a semi-conductive state and metallic state for each respective spin-type, thus demonstrating possible quantum mechanisms for spin-filtration.
Keywords: graphene nanoribbons; Hubbard model; spin-transport; itinerant magnetism; strain effects; nanotechnology

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Baldwin, J.; Hancock, Y. Effects of Strain on Notched Zigzag Graphene Nanoribbons. Crystals 2013, 3, 38-48.

AMA Style

Baldwin J, Hancock Y. Effects of Strain on Notched Zigzag Graphene Nanoribbons. Crystals. 2013; 3(1):38-48.

Chicago/Turabian Style

Baldwin, Jack; Hancock, Y. 2013. "Effects of Strain on Notched Zigzag Graphene Nanoribbons." Crystals 3, no. 1: 38-48.

Crystals EISSN 2073-4352 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert