Next Article in Journal
The Influence of Surface Alumina and Silica on the Photocatalytic Degradation of Organic Pollutants
Previous Article in Journal
Broad Spectrum Microbicidal Activity of Photocatalysis by TiO2
Catalysts 2013, 3(1), 324-337; doi:10.3390/catal3010324
Article

Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts

1
,
1,2
,
1
,
1
 and
1,2,*
Received: 26 January 2013 / Revised: 25 February 2013 / Accepted: 6 March 2013 / Published: 21 March 2013
View Full-Text   |   Download PDF [1874 KB, uploaded 21 March 2013]   |   Browse Figures

Abstract

The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO2 and nano-TiO2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM), inductively coupled plasma mass spectrometry (ICP-MS), BET, powder X-ray diffraction (PXRD) and NH3- temperature-programmed desorption (TPD).
Keywords: nano-zinc oxide; supported catalyst; rhodium; hydroformylation of 1-hexene nano-zinc oxide; supported catalyst; rhodium; hydroformylation of 1-hexene
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplement

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Kontkanen, M.-L.; Tuikka, M.; Kinnunen, N.M.; Suvanto, S.; Haukka, M. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts. Catalysts 2013, 3, 324-337.

View more citation formats

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert