Next Article in Journal
Three-Dimensional Electro-Sonic Flow Focusing Ionization Microfluidic Chip for Mass Spectrometry
Next Article in Special Issue
Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review
Previous Article in Journal
Calibration of Nanopositioning Stages
Previous Article in Special Issue
Progress of MEMS Scanning Micromirrors for Optical Bio-Imaging
Article Menu

Export Article

Open AccessArticle
Micromachines 2015, 6(12), 1876-1889; doi:10.3390/mi6121460

A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph

Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Franck Chollet
Received: 23 October 2015 / Revised: 19 November 2015 / Accepted: 24 November 2015 / Published: 2 December 2015
(This article belongs to the Special Issue Optical Microsystems)
View Full-Text   |   Download PDF [3615 KB, uploaded 2 December 2015]   |  

Abstract

This paper reports a large-range electrothermal bimorph microelectromechanical systems (MEMS) mirror with fast thermal response. The actuator of the MEMS mirror is made of three segments of Cu/W bimorphs for lateral shift cancelation and two segments of multimorph beams for obtaining large vertical displacement from the angular motion of the bimorphs. The W layer is also used as the embedded heater. The silicon underneath the entire actuator is completely removed using a unique backside deep-reactive-ion-etching DRIE release process, leading to improved thermal response speed and front-side mirror surface protection. This MEMS mirror can perform both piston and tip-tilt motion. The mirror generates large pure vertical displacement up to 320 μm at only 3 V with a power consumption of 56 mW for each actuator. The maximum optical scan angle achieved is ±18° at 3 V. The measured thermal response time is 15.4 ms and the mechanical resonances of piston and tip-tilt modes are 550 Hz and 832 Hz, respectively. View Full-Text
Keywords: microelectromechanical systems (MEMS) mirror; electrothermal actuation; Cu/W bimorph; lateral-shift-free (LSF); vertical scan; multimorph frame; large range; fast response; backside release microelectromechanical systems (MEMS) mirror; electrothermal actuation; Cu/W bimorph; lateral-shift-free (LSF); vertical scan; multimorph frame; large range; fast response; backside release
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhang, X.; Zhou, L.; Xie, H. A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph. Micromachines 2015, 6, 1876-1889.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top