Palladium-Gold Modified Ultramicro Interdigital Array Electrode Chip for Nitrate Detection in Neutral Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Methods
3. Experimental and Results
3.1. Fabrication of Nitrate Sensing Electrode Chip
3.2. Preparation of Pd-Aunps Composite Sensing Film
3.3. Detection Performance of the Ultramicro Interdigital Electrode Chips Modified by Pd-Aunps Composite Sensitive Membrane for Nitrate
3.3.1. Characterization of Pd-Aunps to Nitrate
3.3.2. Nitrate Determination with the Pd-Aunps Modified Chip
3.3.3. Anti-Interference Test
3.3.4. Actual Water Sample Test
4. Conclusion and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Available online: http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201606/P020160602333160471955.pdf (accessed on 20 May 2016).
- Guidelines for Drinking Water Quality Recommendations; WHO: Paris, France, 1993.
- Li, W. Evaluation of measurement uncertainty of water quality—Determination of total nitrogen—Alkaline potassium persulfate digestion UV spectrophotometric method. Northern Environment 2013, X832, O657.3. [Google Scholar]
- Pan, D.; Lu, W.; Wu, S.; Zhang, H.; Qin, W. In situ spontaneous redox synthesis of carbon nanotubes/copper oxide nanocomposites and their preliminary application in electrocatalytic reduction of nitrate. Mater. Lett. 2012, 89, 333–335. [Google Scholar] [CrossRef]
- Fu, Y.; Bian, C.; Kuang, J.; Li, Y.; Xia, S. Nitrate sensing based on Pd-Sn bimetallic composite: A comparison between a bulk electrode and a microband electrode array. IET Micro Nano Lett. 2016, 11, 212–214. [Google Scholar] [CrossRef]
- Liang, J.; Zheng, Y.; Liu, Z. Nanowire-based Cu electrode as electrochemical sensor for detection of nitrate in water. Sens. Actuat. B Chem. 2016, 232, 336–344. [Google Scholar] [CrossRef]
- Ali, M.A.; Jiang, H.; Mahal, N.K.; Weber, R.J.; Kumar, R.; Castellano, M.J.; Dong, L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuat. B Chem. 2017, 239, 1289–1299. [Google Scholar] [CrossRef]
- Zhad, H.R.L.Z.; Lai, R.Y. Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate. Analyt. Chim. Acta 2015, 892, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tatka, L.; Kim, U. Affordable, rapid, electrochemical nitrate detection towards point-of-use water quality monitoring. In Proceedings of the 2016 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 13–16 October 2016; pp. 761–764. [Google Scholar]
- Alahi, M.E.E.; Xie, L.; Mukhopadhyay, S.; Burkitt, L. A Temperature Compensated Smart Nitrate-Sensor for Agricultural Industry. IEEE Trans. Industr. Electron. 2017, 64, 7333–7341. [Google Scholar] [CrossRef]
- Paixão, T.R.L.C.; Cardoso, J.L.; Bertotti, M. Determination of nitrate in mineral water and sausage samples by using a renewable in situ copper modified electrode. Talanta 2007, 71, 186–191. [Google Scholar] [CrossRef]
- Gamboa, J.C.M.; Peña, R.C.; Paixão, T.R.L.C.; Bertotti, M. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 2009, 80, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Lu, W.; Zhang, H.; Zhang, L.; Zhuang, J. Voltammetric determination of nitrate in water samples at copper modified bismuth bulk electrode. Int. J. Environm. Analyt. Chem. 2013, 93, 935–945. [Google Scholar] [CrossRef]
- Casella, I.G.; Contursi, M. Highly dispersed rhodium particles on multi-walled carbon nanotubes for the electrochemical reduction of nitrate and nitrite ions in acid medium. Electrochim. Acta 2014, 138, 447–453. [Google Scholar] [CrossRef]
- Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater. 2017, 324, 762–772. [Google Scholar] [CrossRef]
- Szunerits, S.; Boukherroub, R. Investigation of the electrocatalytic activity of boron-doped diamond electrodes modified with palladium or gold nanoparticles for oxygen reduction reaction in basic medium. C. R. Chim. 2008, 11, 1004–1009. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, L.; Shanbhag, V. Improving Electrochemical Sensitivity of Silver Electrodes for Nitrate Detection in Neutral and Base Media through Surface Nanostructuration. J. Electrochem. Soc. 2013, 161, B3028–B3033. [Google Scholar] [CrossRef]
- Da Silva, I.S.; de Araujo, M.R.; Paixão, T.R.L.C.; Angnes, L. Direct nitrate sensing in water using an array of copper-microelectrodes from flat flexible cables. Sens. Actuat. B Chem. 2013, 188, 94–98. [Google Scholar] [CrossRef]
- Mahmoudian, M.R.; Alias, Y.; Basirun, W.J.; Woi, P.M.; Jamali-Sheini, F.; Sookhakian, M.; Silakhori, M. A sensitive electrochemical nitrate sensor based on polypyrrole coated palladium nanoclusters. J. Electroanalyt. Chem. 2015, 751, 30–36. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Bian, C.; Tong, J.; Xia, S. Electrodeposition of Copper Nano-clusters at a Platinum Microelectrode for trace nitrate determination. Key Eng. Mater. 2010, 5, 339–342. [Google Scholar] [CrossRef]
- Gokhale, A.A.; Lu, J.; Weerasiri, R.R.; Yu, J.; Lee, I. Amperometric Detection and Quantification of Nitrate Ions Using a Highly Sensitive Nanostructured Membrane Electrocodeposited Biosensor Array. Electroanalysis 2015, 27, 1127–1137. [Google Scholar] [CrossRef]
- Ali, M.A.; Jiao, Y.; Tabassum, S.; Wang, Y.; Jiang, H.; Dong, L. Electrochemical detection of nitrate ions in soil water using graphene foam modified by TiO2 nanofibers and enzyme molecules. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 238–241. [Google Scholar]
- Alahi, M.E.E.; Xie, L.; Zia, A.I.; Mukhopadhyay, S.; Burkitt, L. Practical nitrate sensor based on electrochemical impedance measurement. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016. [Google Scholar]
- Bui, M.-P.N.; Brockgreitens, J.; Ahmed, S.; Abbas, A. Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens. Bioelectron. 2016, 85, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. [Google Scholar] [CrossRef]
- Hu, J.; Sun, J.; Bian, C.; Tong, J.; Xia, S. 3D dendritic nanostructure of silver-array: Preparation, growth mechanism and application in trace nitrate sensor. Electroanalysis 2013, 25, 546–556. [Google Scholar] [CrossRef]
- Davis, J.; Moorcroft, M.J.; Wilkins, S.J.; Compton, R.G.; Cardosi, M.F. Electrochemical detection of nitrate and nitrite at a copper modified electrode. Analyst 2000, 125, 737–742. [Google Scholar] [CrossRef]
- Stortini, A.M.; Moretto, L.M.; Mardegan, A.; Ongaro, M.; Ugo, P. Arrays of copper nanowire electrodes: Preparation characterizationand application as nitrate sensor. Sens. Actuat. B Chem. 2015, 207, 186–192. [Google Scholar] [CrossRef]
- Deganello, F.; Liotta, L.F.; Macaluso, A.; Venezia, A.M.; Deganello, G. Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts. Appl. Catal. B Environment. 2000, 24, 265–273. [Google Scholar] [CrossRef]
- Yang, D.; Feng, W.; Wu, G.; Li, L.; Guan, N. Nitrate hydrogenation on Pd–Cu/TiO2 catalyst prepared by photo-deposition. Catal. Today 2011, 175, 356–361. [Google Scholar] [CrossRef]
Sensing Film | The Current Response (μA) | Relative Standard Deviation (%) |
---|---|---|
Palladium | unstable | – |
Au nanoparticle | 0.490 | 6.00 |
Pd-AuNPs | 1.625 | 4.50 |
Sample | Detection Results of Institution (mg/L) | Detection Results of this Paper (mg/L) | Relative Deviation (%) |
---|---|---|---|
Sample1 | 1.17 | 1.40 | 19.7 |
Sample2 | 1.19 | 1.41 | 18.5 |
Sample3 | 1.20 | 1.36 | 13.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Tong, J.; Li, Y.; Sun, J.; Bian, C.; Xia, S. Palladium-Gold Modified Ultramicro Interdigital Array Electrode Chip for Nitrate Detection in Neutral Water. Micromachines 2019, 10, 223. https://doi.org/10.3390/mi10040223
Zhao S, Tong J, Li Y, Sun J, Bian C, Xia S. Palladium-Gold Modified Ultramicro Interdigital Array Electrode Chip for Nitrate Detection in Neutral Water. Micromachines. 2019; 10(4):223. https://doi.org/10.3390/mi10040223
Chicago/Turabian StyleZhao, Shanshan, Jianhua Tong, Yang Li, Jizhou Sun, Chao Bian, and Shanhong Xia. 2019. "Palladium-Gold Modified Ultramicro Interdigital Array Electrode Chip for Nitrate Detection in Neutral Water" Micromachines 10, no. 4: 223. https://doi.org/10.3390/mi10040223
APA StyleZhao, S., Tong, J., Li, Y., Sun, J., Bian, C., & Xia, S. (2019). Palladium-Gold Modified Ultramicro Interdigital Array Electrode Chip for Nitrate Detection in Neutral Water. Micromachines, 10(4), 223. https://doi.org/10.3390/mi10040223