Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study
Abstract
:1. Introduction
2. Methods
2.1. Study Desing and Sample Population
2.2. Data Collection
2.3. Ethics Statement
2.4. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Effects of Anthropometric, Body Composition, Muscular Fitness and Calcium Intake Characteristics on Bone Health (c-BUA)
3.3. Characteristics Associated with Healthy and Poor Bone Health
3.4. Factors Associated with Poor Bone Health
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BIA | bioelectrical impedance analysis |
BMC | bone mineral content |
BMD | bone mineral density |
BMI | body mass index |
c-BUA | calcaneus quantitative ultrasound parameter |
DXA | dual-energy X-ray absorptiometry |
MF | muscular fitness |
SLJ | standing long-jump |
QUS | quantitative ultrasonography |
WHtR | waist-to-height ratio |
References
- Estrada, A.; Ramnitz, M.S.; Gafni, R.I. Bone densitometry in children and adolescents. Curr. Opin. Obstet. Gynecol. 2014, 26, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Høiberg, M.P.; Rubin, K.H.; Hermann, A.P.; Brixen, K.; Abrahamsen, B. Diagnostic devices for osteoporosis in the general population: A systematic review. Bone 2016, 92, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Saavedra, O.L.; Yamamoto, S. Osteoporosis in urban post-menopausal women of the Philippines: Prevalence and risk factors. Arch. Osteoporos. 2008, 3, 17–24. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Ojeda-Pardo, M.L.; Correa-Bautista, J.E.; González-Ruíz, K.; Navarro-Pérez, C.F.; González-Jiménez, E.; Schmidt-RioValle, J.; Izquierdo, M.; Lobelo, F. Normative data for calcaneal broadband ultrasound attenuation among children and adolescents from Colombia: The FUPRECOL Study. Arch. Osteoporos. 2016, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, D.; Barker, A.R.; Williams, C.A.; Arngrímsson, S.A.; Knapp, K.M.; Metcalf, B.S.; Fatouros, I.G.; Moreno, L.A.; Gracia-Marco, L. The impact of sport participation on bone mass and geometry in adolescent males. Med. Sci. Sports Exerc. 2016, in press. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Bianchi, M.L.; Garabedian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Torres-Costoso, A.; Gracia-Marco, L.; Sánchez-López, M.; Notario-Pacheco, B.; Arias-Palencia, N.; Martínez-Vizcaíno, V. Physical activity and bone health in schoolchildren: The mediating role of fitness and body fat. PLoS ONE 2015, 10, e0123797. [Google Scholar] [CrossRef] [PubMed]
- Babaroutsi, E.; Magkos, F.; Manios, Y.; Sidossis, L.S. Lifestyle factors affecting heel ultrasound in Greek females across different life stages. Osteoporos. Int. 2005, 16, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Wuster, C.; de Terlizzi, F.; Becker, S.; Cadossi, M.; Cadossi, R.; Muller, R. Usefulness of quantitative ultrasound in evaluating structural and mechanical properties of bone: Comparison of ultrasound, dual-energy X-ray absorptiometry, micro-computed tomography, and mechanical testing of human phalanges in vitro. Technol. Health Care 2005, 13, 497–510. [Google Scholar] [PubMed]
- Knapp, K.M. Quantitative ultrasound and bone health. Salud Públ. Méx. 2009, 51 (Suppl. 1), S18–S24. [Google Scholar] [CrossRef]
- Cheng, J.C.; Leung, S.S.; Lee, W.T.; Lau, J.T.; Maffulli, N.; Cheung, A.Y.; Chan, K.M. Determinants of axial and peripheral bone mass in Chinese adolescents. Arch. Dis. Child. 1998, 78, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Julián-Almárcegui, C.; Gómez-Cabello, A.; Huybrechts, I.; González-Agüero, A.; Kaufman, J.M.; Casajús, J.A.; Vicente-Rodríguez, G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: A systematic review. Nutr. Rev. 2015, 73, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Torres-Costoso, A.; Gracia-Marco, L.; Sánchez-López, M.; García-Prieto, J.C.; García-Hermoso, A.; Díez-Fernández, A.; Martínez-Vizcaíno, V. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: A mediation analysis. J. Sports Sci. 2015, 33, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Marco, L.; Ortega, F.B.; Jiménez-Pavón, D.; Rodríguez, G.; Castillo, M.J.; Vicente-Rodríguez, G.; Moreno, L.A. Adiposity and bone health in Spanish adolescents: The HELENA study. Osteoporos. Int. 2012, 23, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.N.; Nielsen, C.M.; Helge, E.W.; Madsen, M.; Manniche, V.; Hansen, L.; Hansen, P.R.; Bangsbo, J.; Krustrup, P. Positive effects on bone mineralisation and muscular fitness after 10 months of intense school-based physical training for children aged 8–10 years: The FIT FIRST randomised controlled trial. Br. J. Sports Med. 2016, in press. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Marco, L.; Vicente-Rodríguez, G.; Casajús, J.A.; Molnar, D.; Castillo, M.J.; Moreno, L.A. Effect of fitness and physical activity on bone mass in adolescents: The HELENA Study. Eur. J. Appl. Physiol. 2011, 111, 2671–2680. [Google Scholar] [CrossRef] [PubMed]
- Babaroutsi, E.; Magkos, F.; Manios, Y.; Sidossis, L.S. Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J. Bone Miner. Metab. 2005, 23, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Mouratidou, T.; Vicente-Rodriguez, G.; Gracia-Marco, L.; Huybrechts, I.; Sioen, I.; Widhalm, K.; Valtueña, J.; González-Gross, M.; Moreno, L.A.; HELENA Study Group. Associations of dietary calcium, vitamin D, milk intakes, and 25-hydroxyvitamin D with bone mass in Spanish adolescents: The HELENA study. J. Clin. Densitom. 2013, 16, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Lavado-Garcia, J.M.; Calderon-Garcia, J.F.; Moran, J.M.; Canal-Macias, M.L.; Rodriguez-Dominguez, T.; Pedrera-Zamorano, J.D. Bone mass of Spanish school children: Impact of anthropometric, dietary and body composition factors. J. Bone Miner. Metab. 2012, 30, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.; Quinn, S.; Dwyer, T.; Venn, A.; Jones, G. Measures of childhood fitness and body mass index are associated with bone mass in adulthood: A 20-year prospective study. J. Bone Miner. Res. 2008, 23, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Cole, Z.A.; Harvey, N.C.; Kim, M.; Ntani, G.; Robinson, S.M.; Inskip, H.M.; Godfrey, K.M.; Cooper, C.; Dennison, E.M.; Southampton Women’s Survey Study Group. Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone 2012, 50, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Rodríguez, G.; Urzanqui, A.; Mesana, M.I.; Ortega, F.B.; Ruiz, J.R.; Ezquerra, J.; Casajús, J.A.; Blay, G.; Blay, V.A.; Gonzalez-Gross, M.; et al. Physical fitness effect on bone mass is mediated by the independent association between lean mass and bone mass through adolescence: A cross-sectional study. J. Bone Miner. Metab. 2008, 26, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Vatanparast, H.; Baxter-Jones, A.; Faulkner, R.A.; Bailey, D.A.; Whiting, S.J. Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: The University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am. J. Clin. Nutr. 2005, 82, 700–706. [Google Scholar] [PubMed]
- Tylavsky, F.A.; Holliday, K.; Danish, R.; Womack, C.; Norwood, J.; Carbone, L. Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am. J. Clin. Nutr. 2004, 79, 311–317. [Google Scholar] [PubMed]
- Tai, V.; Leung, W.; Grey, A.; Reid, I.R.; Bolland, M.J. Calcium intake and bone mineral density: Systematic review and meta-analysis. BMJ 2015, 351. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.L.; Winters-Stone, K.; Gabel, K.; Dolny, D. Modifiable lifestyle factors affecting bone health using calcaneus quantitative ultrasound in adolescent girls. Osteoporos. Int. 2007, 18, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Pettinato, A.A.; Loud, K.J.; Bristol, S.K.; Feldman, H.A.; Gordon, C.M. Effects of nutrition, puberty, and gender on bone ultrasound measurements in adolescents and young adults. J. Adolesc. Health. 2006, 39, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Maia, J.A.; Costa, E.T.; Neto, J.F.; Button, V.L. Broadband ultrasound attenuation in the calcaneal region: A comparative study of single-position versus scanning systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Moraes, F.B.; Oliveira, L.G.; Novais Pde, S.; Melo, M.R.; Guimarães, M.L. Correlation between calcaneal bone ultrasound measurements and densitometry among postmenopausal women with fractures caused by bone fragility. Rev. Bras. Ortop. 2015, 46, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Madimenos, F.C.; Snodgrass, J.J.; Blackwell, A.D.; Liebert, M.A.; Cepon, T.J.; Sugiyama, L.S. Normative calcaneal quantitative ultrasound data for the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon. Arch. Osteoporos. 2011, 6, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; Peterson, M.D.; Garcia-Hermoso, A. Handgrip Strength and Ideal Cardiovascular Health among Colombian Children and Adolescents. J Pediatr. 2016, 179, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Rodrigues-Bezerra, D.; Correa-Bautista, J.E.; Izquierdo, M.; Lobelo, F. Reliability of Health-Related Physical Fitness Tests among Colombian Children and Adolescents: The FUPRECOL Study. PLoS ONE 2015, 10, e0140875. [Google Scholar]
- Monasta, L.; Lobstein, T.; Cole, T.J.; Vignerová, J.; Cattaneo, A. Defining overweight and obesity in pre-school children: IOTF reference or WHO standard? Obes. Rev. 2011, 12, 295–300. [Google Scholar] [CrossRef] [PubMed]
- De Ferranti, S.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [PubMed]
- Ashwel, M.; Lejeune, S.; McPherson, K. Ratio of waist circumference to height may be better indicator of need for weight management. BMJ 1996, 312, 377. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Anzola, A.; Martinez-Torres, J.; Vivas, A.; Tordecilla-Sanders, A.; Prieto-Benavides, D.; Izquierdo, M.; Correa-Bautista, J.E.; Garcia-Hermoso, A. Metabolic Syndrome and Associated Factors in a Population-Based Sample of Schoolchildren in Colombia: The FUPRECOL Study. Metab. Syndr. Relat. Disord. 2016, 14, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Siervo, M.; Prado, C.M.; Mire, E.; Broyles, S.; Wells, J.C.; Heymsfield, S.; Katzmarzyk, P.T. Body composition indices of a load-capacity model: Gender- and BMI-specific reference curves. Public Health Nutr. 2015, 18, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Ortegón, M.F.; Ramírez-Vélez, R.; Mosquera, M.; Méndez, F.; Aguilar-de Plata, C. Prevalence of metabolic syndrome in urban Colombian adolescents aged 10–16 years using three different pediatric definitions. J. Trop. Pediatr. 2013, 59, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Martínez-Torres, J.; González-Ruíz, K.; González-Jiménez, E.; Schmidt-RioValle, J.; Garcia-Hermoso, A. Performance of Two Bioelectrical Impedance Analyses in the Diagnosis of Overweight and Obesity in Children and Adolescents: The FUPRECOL Study. Nutrients 2016, 8, 575. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Martínez, M.; Correa-Bautista, J.E.; Lobelo, F.; Izquierdo, M.; Rodríguez-Rodríguez, F.; Cristi-Montero, C. Normative reference of standing long jump for colombian schoolchildren aged 9–17.9 years: The FUPRECOL Study. J. Strength Cond. Res. 2016, in press. [Google Scholar]
- Ramírez-Vélez, R.; Morales, O.; Peña-Ibagon, J.C.; Palacios-López, A.; Prieto-Benavides, D.H.; Vivas, A.; Correa-Bautista, J.E.; Lobelo, F.; Alonso-Martínez, A.; Izquierdo, M. Normative Reference Values for Handgrip Strength in Colombian Schoolchildren: The Fuprecol Study. J. Strength Cond. Res. 2016, in press. [Google Scholar]
- Artero, E.G.; Ruiz, J.R.; Ortega, F.B.; España-Romero, V.; Vicente-Rodríguez, G.; Molnar, D.; Gottrand, F.; González-Gross, M.; Breidenassel, C.; Moreno, L.A.; et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: The HELENA study. Pediatr. Diabetes 2011, 12, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Steene-Johannessen, J.; Anderssen, S.A.; Kolle, E.; Andersen, L.B. Low muscle fitness is associated with metabolic risk in youth. Med. Sci. Sports Exerc. 2009, 41, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Herrera, J.D.; Ramírez-Vélez, R.; Correa-Bautista, J.E. Índice general de fuerza y adiposidad como medida de la condición física relacionada con la salud en niños y adolescentes de Bogotá, Colombia: Estudio FUPRECOL. Nutr. Hosp. 2016, 33, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Flores Navarro-Pérez, C.; González-Jiménez, E.; Schmidt-RioVilla, J.; Meneses-Echávez, J.F.; Correa-Bautista, J.E.; Correa-Rodríguez, M.; Ramírez-Vélez, R. Nivel y estado nutricional en niños y adolescentes de Bogotá, Colombia. Estudio FUPRECOL. Nutr. Hosp. 2016, 33, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Optimal Calcium Intake. In NIH Consens Statement; 1994; Volume 12, pp. 1–31. Available online: https://consensus.nih.gov/1994/1994optimalcalcium097html.htm (accessed on 15 December 2016).
- Jaworski, M.; Lebiedowski, M.; Lorenc, R.S.; Trempe, J. Ultrasound bone measurement in pediatric subjects. Calcif. Tissue Int. 1995, 56, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Vignolo, M.; Brignone, A.; Mascagni, A.; Ravera, G.; Biasotti, B.; Aicardi, G. Influence of age, sex, and growth variables on phalangeal quantitative ultrasound measures: A study in healthy children and adolescents. Calcif. Tissue Int. 2003, 72, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Eliakim, A.; Nemet, D.; Wolach, B. Quantitative ultrasound measurements of bone strength in obese children and adolescents. J. Pediatr. Endocrinol. Metab. 2001, 14, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rodríguez, M.; Rueda-Medina, B.; González-Jiménez, E.; Navarro-Pérez, C.F.; Schmidt-RioValle, J. The levels of bone mineralization are influenced by body composition in children and adolescents. Nutr. Hosp. 2014, 30, 763–768. [Google Scholar] [PubMed]
- Karatzi, K.; Moschonis, G.; Polychronopoulou, M.C.; Chrousos, G.P.; Lionis, C.; Manios, Y.; Healthy Growth Study Group. Cutoff points of waist circumference and trunk and visceral fat for identifying children with elevated inflammation markers and adipokines: The Healthy Growth Study. Nutrition 2016, 32, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Werneck, A.O.; Silva, D.R.; Collings, P.J.; Fernandes, R.A.; Ronque, E.R.; Barbosa, D.S.; Cyrino, E.S. Biological Maturation, Central Adiposity, and Metabolic Risk in Adolescents: A Mediation Analysis. Child. Obes. 2016, 12, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; López-Cifuentes, M.F.; Correa-Bautista, J.E.; González-Ruíz, K.; González-Jiménez, E.; Córdoba-Rodríguez, D.P.; Vivas, A.; Triana-Reina, H.R.; Schmidt-RioValle, J. Triceps and subscapular skinfold thickness percentiles and cut-offs for overweight and obesity in a population-based sample of schoolchildren and adolescents in Bogota, Colombia. Nutrients 2016, 8, 595. [Google Scholar] [CrossRef] [PubMed]
- Golec, J.; Chlebna-Sokół, D. Assessment of the influence of body composition on bone mass in children and adolescents based on a functional analysis of the muscle-bone relationship. Ortop. Traumatol. Rehabil. 2014, 16, 153–163. [Google Scholar] [PubMed]
- Carvalho, W.R.; Gonçalves, E.M.; Ríbeiro, R.R.; Farias, E.S.; Carvalho, S.S.; Guerra-Júnior, G. Influence of body composition on bone mass in children and adolescents. Rev. Assoc. Med. Bras. 2011, 57, 648–653. [Google Scholar] [PubMed]
- Ikeda, Y.; Iki, M.; Morita, A.; Aihara, H.; Kagamimori, S.; Kagawa, Y.; Matsuzaki, T.; Yoneshima, H.; Marumo, F. Ultrasound bone densitometry of the calcaneus, determined with Sahara, in healthy Japanese adolescents: Japanese Population-based Osteoporosis (JPOS) Study. J. Bone Miner. Metab. 2004, 22, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Kudoh, H.; Owan, I.; Horizono, H.; Arakaki, H.; Kanaya, F. Influence of Physical Fitness on the Quantitative Ultrasound Parameters at Calcaneus in Children. Ryukyu Med. J. 2007, 26, 47–55. [Google Scholar]
- Mattila, V.M.; Tallroth, K.; Marttinen, M.; Pihlajamaki, H. Physical fitnness and performance. Body composition by DEXA and its association with physical Wtness in 140 conscripts. Med. Sci. Sports Exerc. 2007, 39, 2242–2247. [Google Scholar] [CrossRef] [PubMed]
- Libuda, L.; Alexy, U.; Remer, T.; Stehle, P.; Schoenau, E.; Kersting, M. Association between long-term consumption of soft drinks and variables of bone modeling and remodeling in a sample of healthy German children and adolescents. Am. J. Clin. Nutr. 2008, 88, 1670–1677. [Google Scholar] [CrossRef] [PubMed]
- Mazariegos-Ramos, E.; Guerrero-Romero, F.; Rodriguez-Moran, M.; Lazcano-Burciaga, G.; Paniagua, R.; Amato, D. Consumption of soft drinks with phosphoric acid as a risk factor for the development of hypocalcemia in children: A case-control study. J. Pediatr. 1995, 126, 940–942. [Google Scholar] [CrossRef]
- Csákváry, V.; Puskás, T.; Bödecs, T.; Lôcsei, Z.; Oroszlán, G.; Kovács, L.G.; Toldy, E. Investigation of adolescents’ bone metabolism in the western part of Transdanubia. Orv. Hetil. 2009, 150, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Paakkunainen, U.; Raittinen, P.; Viikari, J.; Seppanen, R.; Simell, O. The impact of low saturated fat, low cholesterol diet on bone properties measured using calcaneal ultrasound in prepubertal children. Calcif. Tissue Int. 2002, 71, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Im, J.G.; Kim, S.H.; Lee, G.Y.; Joung, H.; Park, M.J. Inadequate calcium intake is highly prevalent in Korean children and adolescents: The Korea National Health and Nutrition Examination Survey (KNHANES) 2007–2010. Public Health Nutr. 2014, 17, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Durá-Travé, T.; Gallinas-Victoriano, F. Milk and dairy products intake in child-juvenile population in Navarre, Spain. Nutr. Hosp. 2014, 30, 794–799. [Google Scholar] [PubMed]
- Wang, M.C.; Crawford, P.B.; Hudes, M.; Van Loan, M.; Siemering, K.; Bachrach, L.K. Diet in midpuberty and sedentary activity in prepuberty predict peak bone mass. Am. J. Clin. Nutr. 2003, 77, 495–503. [Google Scholar] [PubMed]
- Omidvar, N.; Neyestani, T.R.; Hajifaraji, M.; Eshraghian, M.R.; Rezazadeh, A.; Armin, S.; Haidari, H.; Zowghi, T. Calcium Intake, Major Dietary Sources and Bone Health Indicators in Iranian Primary School Children. Iran. J. Pediatr. 2015, 25, e177. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, C.M. Ingesta de calcio en mujeres jóvenes universitarias de Antioquia: Bases para el diseño de un programa educativo para el aumento de la masa ósea máxima y la prevención de la osteoporosis. Perspect. Nutr. Hum. 1999, 31, 33–52. [Google Scholar]
- Gamboa-Delgado, E.M.; López-Barbosa, N.; Vera-Cala, L.M.; Prada-Gómez, G.E. Displaced and local children’s alimentary patterns and nutritional state in Piedecuesta, Colombia. Rev. Salud Publ. 2007, 9, 129–139. [Google Scholar] [CrossRef]
- Leonard, M.B.; Shults, J.; Wilson, B.A.; Tershakovec, A.M.; Zemel, B.S. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am. J. Clin. Nutr. 2004, 80, 514–523. [Google Scholar] [PubMed]
- Daniels, S.R. The Use of BMI in the Clinical Setting. Pediatrics 2009, 124, S35–S41. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Wang, J.; Maynard, L.M.; Thornton, J.C.; Mei, Z.; Pierson, R.N.; Dietz, W.H.; Horlick, M. Relation of BMI to fat and fat-free mass among children and adolescents. Int. J. Obes. 2005, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 1118) | Girls (n = 610) | Boys (n = 508) | ||||
---|---|---|---|---|---|---|---|
Children 9–11.9 Years (n = 246) | Adolescents 12–17.9 Years (n = 364) | p-Value | Children 9–11.9 Years (n = 246) | Adolescents 12–17.9 Years (n = 364) | p-Value | ||
Age (years) | 13.0 (2.3) | 10.6 (1.1) | 14.6 (1.3) | <0.001 | 10.4 (1.2) | 14.6 (1.2) | <0.001 |
Weight (kg) | 46.6 (11.7) | 37.0 (8.5) | 51.0 (8.4) | <0.001 | 37.4 (9.2) | 54.0 (10.4) | <0.001 |
Height (m) | 152.0 (12.4) | 141.5 (9.0) | 155.2 (6.1) | <0.001 | 140.7 (10.0) | 163.0 (9.6) | <0.001 |
Body mass index (kg/m2) | 19.9 (3.2) | 18.5 (2.9) | 21.2 (3.1) | <0.001 | 18.5 (2.8) | 20.2 (3.0) | <0.001 |
Lean mass (kg) | 34.4 (8.7) | 60.4 (14.7) | 80.0 (15.0) | <0.001 | 58.5 (12.0) | 82.9 (18.0) | <0.001 |
Body mass index status (%) * | |||||||
Underweight | 164 (14.7) | 43 (17.5) | 53 (14.6) | 0.004 | 14 (7.1) | 54 (17.3) | <0.001 |
Normal weight | 658 (58.9) | 119 (48.3) | 207 (56.9) | 121 (61.7) | 211 (67.6) | ||
Overweight | 221 (19.8) | 58 (23.6) | 89 (24.5) | 39 (19.9) | 35 (11.2) | ||
Obese | 75 (6.7) | 26 (10.6) | 15 (4.1) | 22 (11.2) | 12 (3.8) | ||
Waist circumference (cm) | 82.6 (9.3) | 75.5 (7.5) | 88.0 (7.1) | <0.001 | 75.5 (7.7) | 85.6 (7.6) | <0.001 |
Waist-to-height ratio | 0.426 (0.045) | 0.427 (0.046) | 0.422 (0.043) | 0.189 | 0.447 (0.045) | 0.418 (0.043) | <0.001 |
Fat mass (%) | 21.7 (7.5) | 60.4 (14.7) | 80.8 (15.0) | <0.001 | 58.5 (12.0) | 82.9 (18.0) | <0.001 |
Tanner stage * | 31.5/35.9/32.6 | 54.1/33.3/12.6 | 15.4/40.1/44.5 | <0.001 | 62.8/29.6/7.7 | 12.8/36.9/50.3 | <0.001 |
Prepuber/Puber/Pospuber (%) | |||||||
Standing long-jump (cm) | 130.8 (29.2) | 107.4 (18.8) | 127.5 (21.5) | <0.001 | 120.9 (21.5) | 158.8 (26.2) | <0.001 |
Handgrip (kg) | 22.5 (8.1) | 16.0 (4.3) | 23.0 (4.2) | <0.001 | 16.4 (4.5) | 30.7 (8.4) | <0.001 |
Muscular index score | 0.0 (0.8) | −0.1 (0.8) | 0.0 (0.8) | 0.046 | −0.2 (0.9) | 0.0 (0.8) | 0.008 |
c-BUA (dB/MHz) | 73.0 (18.9) | 60.5 (14.8) | 80.8 (15.0) | <0.001 | 58.5 (12.1) | 82.9 (18.0) | <0.001 |
Mediterranean diet adherence * | 30.4/60.2/9.4 | 29.7/58.5/11.8 | 35.2/58.0/6.9 | 0.068 | 27.6/60.7/11.7 | 27.2/63.8/9.0 | 0.577 |
Low, Medium, High (%) | |||||||
Sugar-sweetened soft drink intake * | 13.2/78.4/8.4 | 14.6/72.4/13.0 | 11.8/79.4/8.8 | 0.114 | 14.3/79.1/6.6 | 13.1/81.7/5.2 | 0.705 |
Daily/Weekly/Never | |||||||
Sugar-sweetened drink intake * | 6.3/53.7/40.0 | 5.7/49.6/44.7 | 5.2/48.4/46.4 | 0.904 | 7.7/58.7/33.6 | 7.1/60.3/32.6 | 0.930 |
Daily/Weekly/Never | |||||||
Calcium intake foods (portions/day) | 1.3 (2.0) | 1.1 (1.7) | 1.3 (2.0) | 0.152 | 1.0 (1.7) | 1.5 (2.4) | 0.002 |
Calcium intake dietary recommendations (portions/day) | 3.7 (0.7) | 3.3 (0.4) | 3.5 (0.0) | <0.001 | 3.2 (0.5) | 4.7 (0.6) | <0.001 |
Compliance with calcium intake dietary recommendations * (daily, yes) | 8.7 | 8.1 | 9.3 | 0.606 | 8.2 | 8.7 | 0.847 |
Characteristics | Total (n = 1118) | Girls (n = 610) | Boys (n = 508) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Children 9–11.9 Years (n = 246) | Adolescents 12–17.9 Years (n = 364) | Children 9–11.9 Years (n = 246) | Adolescents 12–17.9 Years (n = 364) | |||||||
r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
Age (years) | 0.663 | <0.001 | 0.429 | <0.001 | 0.283 | <0.001 | 0.443 | <0.001 | 0.492 | <0.001 |
Weight (kg) | 0.700 | <0.001 | 0.550 | <0.001 | 0.484 | <0.001 | 0.630 | <0.001 | 0.535 | <0.001 |
Height (m) | 0.649 | <0.001 | 0.449 | <0.001 | 0.310 | <0.001 | 0.631 | <0.001 | 0.443 | <0.001 |
Body mass index (kg/m2) | 0.480 | <0.001 | 0.416 | <0.001 | 0.376 | <0.001 | 0.417 | <0.001 | 0.352 | <0.001 |
Lean mass (kg) | 0.689 | <0.001 | 0.543 | <0.001 | 0.460 | <0.001 | 0.679 | <0.001 | 0.575 | <0.001 |
Waist circumference (cm) | 0.475 | <0.001 | 0.328 | <0.001 | 0.404 | <0.001 | 0.409 | <0.001 | 0.347 | <0.001 |
Waist-to-height ratio | 0.015 | 0.624 | 0.021 | 0.995 | 0.085 | 0.103 | −0.141 | <0.001 | 0.018 | 0.747 |
Fat mass (%) | 0.082 | 0.006 | 0.320 | <0.001 | 0.325 | <0.001 | 0.212 | 0.090 | 0.044 | 0.451 |
Standing long-jump (cm) | 0.391 | <0.001 | 0.229 | <0.001 | 0.121 | 0.020 | 0.170 | 0.017 | 0.199 | <0.001 |
Handgrip (kg) | 0.644 | <0.001 | 0.469 | <0.001 | 0.323 | <0.001 | 0.526 | <0.001 | 0.580 | <0.001 |
Muscular index score | 0.259 | <0.001 | 0.277 | <0.001 | 0.151 | <0.001 | 0.391 | <0.001 | 0.278 | <0.001 |
Calcium intake foods (portions/day) | 0.069 | 0.021 | 0.028 | 0.661 | 0.016 | 0.760 | 0.015 | 0.829 | 0.041 | 0.469 |
CIDR (portions/day) | 0.453 | <0.001 | 0.236 | <0.001 | 0.281 | <0.001 | 0.320 | <0.001 | 0.338 | <0.001 |
Characteristics | Adequate Bone Healthy (n = 956) | Poor Bone Healthy (n = 162) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
n | % | CI 95% | n | % | CI 95% | ||||
Girls | 522 | 54.6 | 51.7 | 57.8 | 88 | 54.3 | 46.3 | 62.3 | 0.947 |
Boys | 434 | 45.4 | 42.2 | 48.3 | 74 | 45.7 | 37.7 | 53.7 | |
Children (aged 9–11.9 years) | 378 | 39.5 | 36.5 | 42.6 | 64 | 39.5 | 31.5 | 46.9 | 0.994 |
Adolescents (aged 12–17.9 years) | 578 | 60.5 | 57.4 | 63.5 | 98 | 60.5 | 53.1 | 68.5 | |
Underweight (BMI) | 119 | 12.4 | 10.6 | 14.4 | 45 | 27.8 | 20.4 | 34.6 | <0.001 |
Normal (BMI) | 565 | 59.1 | 56.0 | 62.1 | 93 | 57.4 | 49.4 | 64.8 | |
Overweight (BMI) | 199 | 20.8 | 18.3 | 23.4 | 22 | 13.6 | 8.6 | 19.1 | |
Obese (BMI) | 73 | 7.6 | 6.0 | 9.3 | 2 | 1.2 | 0.0 | 3.1 | |
Lean mass (unhealthy) | 491 | 51.4 | 48.0 | 54.4 | 48 | 29.6 | 22.8 | 36.4 | |
Lean mass (healthy) | 465 | 48.6 | 45.6 | 52.0 | 114 | 70.4 | 63.6 | 77.2 | |
Waist circumference (unhealthy) | 44 | 4.6 | 3.3 | 6.0 | 5 | 3.1 | 0.6 | 6.2 | 0.387 |
Waist circumference (healthy) | 912 | 95.4 | 94.0 | 96.7 | 157 | 96.9 | 93.8 | 99.4 | |
Waist to height-ratio (unhealthy) | 74 | 7.7 | 6.2 | 9.5 | 6 | 3.7 | 1.2 | 6.8 | 0.072 |
Waist to height-ratio (healthy) | 882 | 92.3 | 90.5 | 93.8 | 156 | 96.3 | 93.2 | 98.8 | |
Fat mass (unhealthy) | 252 | 26.4 | 23.7 | 29.1 | 23 | 14.2 | 9.3 | 20.4 | <0.001 |
Fat mass (healthy) | 704 | 73.6 | 70.9 | 76.3 | 139 | 85.8 | 79.6 | 90.7 | |
Tanner stage (pre-pubertal) | 302 | 31.6 | 28.6 | 34.4 | 50 | 30.9 | 24.1 | 37.7 | 0.945 |
Tanner stage (pubertal) | 341 | 35.7 | 32.6 | 38.6 | 60 | 37.0 | 29.6 | 44.4 | |
Tanner stage (post-pubertal) | 313 | 32.7 | 29.8 | 35.8 | 52 | 32.1 | 25.3 | 39.5 | |
Standing long-jump (unhealthy) | 526 | 55.0 | 52.0 | 57.9 | 106 | 65.4 | 58.6 | 72.2 | 0.014 |
Standing long-jump (healthy) | 430 | 45.0 | 42.1 | 48.0 | 56 | 34.6 | 27.8 | 41.4 | |
Handgrip (unhealthy) | 637 | 66.6 | 63.5 | 69.7 | 143 | 88.3 | 82.7 | 93.2 | <0.001 |
Handgrip (healthy) | 319 | 33.4 | 30.3 | 36.5 | 19 | 11.7 | 6.8 | 17.3 | |
Muscular index score (unhealthy) | 92 | 9.6 | 7.7 | 11.5 | 31 | 19.1 | 13.6 | 25.3 | <0.001 |
Muscular index score (healthy) | 864 | 90.4 | 88.5 | 92.3 | 131 | 80.9 | 74.7 | 86.4 | |
Mediterranean diet adherence (low) | 289 | 30.2 | 27.4 | 33.3 | 51 | 31.5 | 24.7 | 38.9 | 0.908 |
Mediterranean diet adherence (medium) | 578 | 60.5 | 57.5 | 63.6 | 95 | 58.6 | 50.6 | 66 | |
Mediterranean diet adherence (high) | 89 | 9.3 | 7.5 | 11.2 | 16 | 9.9 | 5.6 | 14.8 | |
Sugar-sweetened soft drink intake (daily) | 132 | 13.8 | 11.7 | 15.9 | 16 | 9.9 | 5.6 | 14.8 | 0.186 |
Sugar-sweetened soft drink intake (weekly) | 749 | 78.3 | 75.7 | 81.0 | 128 | 79.0 | 72.2 | 85.2 | |
Sugar-sweetened soft drink intake (never) | 75 | 7.8 | 6.2 | 9.6 | 18 | 11.1 | 6.8 | 16 | |
Sugar-sweetened drink intake (daily) | 60 | 6.3 | 4.7 | 7.9 | 10 | 6.2 | 3.1 | 9.9 | 0.413 |
Sugar-sweetened drink intake (weekly) | 520 | 54.4 | 51.0 | 57.6 | 81 | 50.0 | 42 | 57.4 | |
Sugar-sweetened drink intake (never) | 376 | 39.3 | 36.3 | 42.7 | 71 | 43.8 | 36.4 | 51.8 | |
Compliance CIDR (No) | 871 | 91.1 | 89.1 | 92.9 | 150 | 92.6 | 88.9 | 96.3 | 0.536 |
Compliance CIDR (Yes) | 85 | 8.9 | 7.1 | 10.9 | 12 | 7.4 | 3.7 | 11.1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forero-Bogotá, M.A.; Ojeda-Pardo, M.L.; García-Hermoso, A.; Correa-Bautista, J.E.; González-Jiménez, E.; Schmidt-RíoValle, J.; Navarro-Pérez, C.F.; Gracia-Marco, L.; Vlachopoulos, D.; Martínez-Torres, J.; et al. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study. Nutrients 2017, 9, 106. https://doi.org/10.3390/nu9020106
Forero-Bogotá MA, Ojeda-Pardo ML, García-Hermoso A, Correa-Bautista JE, González-Jiménez E, Schmidt-RíoValle J, Navarro-Pérez CF, Gracia-Marco L, Vlachopoulos D, Martínez-Torres J, et al. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study. Nutrients. 2017; 9(2):106. https://doi.org/10.3390/nu9020106
Chicago/Turabian StyleForero-Bogotá, Mónica Adriana, Mónica Liliana Ojeda-Pardo, Antonio García-Hermoso, Jorge Enrique Correa-Bautista, Emilio González-Jiménez, Jacqueline Schmidt-RíoValle, Carmen Flores Navarro-Pérez, Luis Gracia-Marco, Dimitris Vlachopoulos, Javier Martínez-Torres, and et al. 2017. "Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study" Nutrients 9, no. 2: 106. https://doi.org/10.3390/nu9020106
APA StyleForero-Bogotá, M. A., Ojeda-Pardo, M. L., García-Hermoso, A., Correa-Bautista, J. E., González-Jiménez, E., Schmidt-RíoValle, J., Navarro-Pérez, C. F., Gracia-Marco, L., Vlachopoulos, D., Martínez-Torres, J., & Ramírez-Vélez, R. (2017). Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study. Nutrients, 9(2), 106. https://doi.org/10.3390/nu9020106