Next Article in Journal
Therapeutic Versatility of Resveratrol Derivatives
Previous Article in Journal
Use of Novel High-Protein Functional Food Products as Part of a Calorie-Restricted Diet to Reduce Insulin Resistance and Increase Lean Body Mass in Adults: A Randomized Controlled Trial
Article Menu
Issue 11 (November) cover image

Export Article

Open AccessArticle
Nutrients 2017, 9(11), 1187; doi:10.3390/nu9111187

Effects of Melatonin on Glucose Homeostasis, Antioxidant Ability, and Adipokine Secretion in ICR Mice with NA/STZ-Induced Hyperglycemia

1
Department of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
2
Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
*
Author to whom correspondence should be addressed.
Received: 1 September 2017 / Revised: 4 October 2017 / Accepted: 26 October 2017 / Published: 29 October 2017
View Full-Text   |   Download PDF [678 KB, uploaded 29 October 2017]   |  

Abstract

Diabetes is often associated with decreased melatonin level. The aim was to investigate the effects of different dosage of melatonin on glucose hemostasis, antioxidant ability and adipokines secretion in diabetic institute for cancer research (ICR) mice. Forty animals were randomly divided into five groups including control (C), diabetic (D), low-dosage (L), medium-dosage (M), and high-dosage (H) groups. Groups L, M, and H, respectively, received oral melatonin at 10, 20, and 50 mg/kg of BW (body weight) daily after inducing hyperglycemia by nicotinamide (NA)/ streptozotocin (STZ). After the six-week intervention, results showed that melatonin administration increased insulin level and performed lower area under the curve (AUC) in H group (p < 0.05). Melatonin could lower hepatic Malondialdehyde (MDA) level in all melatonin-treated groups and increase superoxide dismutase activity in H group (p < 0.05). Melatonin-treated groups revealed significant higher adiponectin in L group, and lower leptin/adiponectin ratio and leptin in M and H groups (p < 0.05). Melatonin could lower cholesterol and triglyceride in liver and decrease plasma cholesterol and low-density lipoprotein-cholesterol (LDL-C) in L group, and increase plasma high-density lipoprotein-cholesterol (HDL-C) in H group (p < 0.05). Above all, melatonin could decrease oxidative stress, increase the adiponectin level and improve dyslipidemia, especially in H group. These data support melatonin possibly being a helpful aid for treating hyperglycemia-related symptoms. View Full-Text
Keywords: melatonin; diabetes; adiopkines; oxidative stress and insulin resistance melatonin; diabetes; adiopkines; oxidative stress and insulin resistance
Figures

Figure 1a

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Lo, C.-C.; Lin, S.-H.; Chang, J.-S.; Chien, Y.-W. Effects of Melatonin on Glucose Homeostasis, Antioxidant Ability, and Adipokine Secretion in ICR Mice with NA/STZ-Induced Hyperglycemia. Nutrients 2017, 9, 1187.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top